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Introduction 

The concept of a world system as first envisioned by Immanuel Wallerstein 
(1974) consists of a single or small group of core polities connected economi-
cally to a larger number of semi-peripheral polities which are in turn econo-
mically connected to an even larger number of peripheral polities. The core pol-
ities exploited the semi-peripheral and peripheral polities with respect to re-
source extraction, and were the center of production of this pyramidal organiza-
tion, this production being driven by global capitalism. Wallerstein (2004) de-
fines capitalism as continual or endless consumption with the implication that 
there will be an on-going flow of materials from peripheral and semi-peripheral 
polities to the core producers. It should be noted here that this arrangement of 
core to peripheral polity is analogous to a Pareto-like distribution in which high 
frequency entities are members of low magnitude classes, in this case low mag-
nitude classes have low access to wealth, and low frequency entities have ac-
cess to considerable wealth. 

Since the inception of the world system concept other scholars have investi-
gated the reality of the existence of the world system over the course of human 
history and have charted the historical paths of this system. Notable among the-
se scholars are the late Andre Gunder Frank and William Thompson (2005), as 
well as George Modelski (2003). Also deserving note for their work on macro-
models of world system behavior are Andrey Korotayev, Artemy Malkov, and 
Daria Khaltourina (2006a, 2006b; Korotayev and Khaltourina 2006). Their 
work, led by Korotayev, has taken a detailed look at both contemporary phe-
nomena such as the global demographic transition we are currently rapidly ap-
proaching and the Medieval and contemporary demographics of Africa and also 
the historical demographics of Medieval Egypt, always with the concept of the 
world system providing the fundamental direction for their work. Also of note 
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is Historical Dynamics by Peter Turchin, a work that addresses the mathemati-
cal study of dynamic changes in agrarian polities, particularly secular cycles, 
and encompasses almost the entire time period under study in this paper.  

Of the scholars mentioned George Modelski (2003 and elsewhere) has taken 
the broadest view of world system evolution and history and has provided 
a graphical model of world system evolution as it is reflected by both changes 
in urbanization and changes in global population magnitude. His model, 
a graph of five thousand years of world system history, consists of phases of 
growth punctuated by phases of reorganization, with each phase lasting about 
one thousand years. While the phases of growth are characterized by a positive 
slope, the periods of reorganization are plateau-like with an average slope of 
zero (see Figures 1a and 1b). The form of these graphs themselves can be pro-
duced either by tracking the global population of the world system over time or 
by tracking the maximum size of urban area over time. In either case the same 
pattern is produced, that pattern being a set of two plateaus flanked by by peri-
ods of directed change and characterized by more or less continuously decreas-
ing values of γ. For the purposes of this paper Modelski's data on world cities 
have been modified to produce Figures 1a and 1b. Specifically, the minimum 
total number of people inhabiting world cities for the Ancient, Classical, and 
Modern World systems by taking the number of world cities and multiplying 
that number by the average minimum number of people inhabiting those cities 
as defined by Modelski (2003). Figure 1a is a punctuated linear plot of this data 
in which each segment represents each of the three historic periods. It can be seen 
that the first two segments of this graph have essentially the same shape even 
though the city size differs by an order of magnitude. The segment of this graph 
representing the Modern World system has the form of an exponential curve. In 
Figure 1b the ordinate is logarithmic, and the sense of scale between the three 
ages gives a clearer picture of the relationship between the periods of growth 
and the plateaus, designated as periods of reorganization by Modelski. Of inter-
est is the fact that the period of time known as the so-called Dark Ages, i.e.  
the early Medieval Age, is associated with one of the phases of reorganization 
and such events as the ends of the Early, Middle, and Late Bronze Ages are as-
sociated with an earlier period of reorganization. 

This paper proposes to investigate world system behavior over time, i.e. 
world system evolution, from a more quantitative and mathematical perspec-
tive. Included within this analysis will be the assessment of the degree of con-
nectedness of the world system as it is reflected by urbanization. It is the intent 
here to map out the limits to or constraints on world system evolution, and the 
approach to this evolutionary analysis is not unlike that of Raup and Michelson 
(1965) in which they established physical constraints to the evolution of 
the molluscan coiled shell. 

Fundamental to this approach is the construction of a model based on ap-
propriate assumptions regarding the structure, function, and evolution of  
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the world system. These assumptions must not only constrain and guide the 
form of the model constructed but also permit modifications to the model. Fur-
ther, these assumptions will define the ability of the model to reflect reality, 
generality, and precision with respect to the function of the model. Recall that 
only two of the three model characteristics can be satisfied by any given 
model. The model constructed in this analysis has considerable generality hav-
ing general applicability over time and is capable of making precise predic-
tions, but does not reflect any particular reality, i.e. it is global in scope. In oth-
er words, the model will not represent the detailed historical course of the Ro-
man Empire, or the demise of the Mayans, or the migrations of the Xiongnu. 
Rather, it will provide a specific context within which specialists can research 
the details of these and other civilizations. Finally, because of the nature of this 
model, it should be considered as a complimentary and supplementary tool to 
other types of historical research, not a replacement of standard historical 
scholarship; the domain of historical research is being expanded rather than 
shifting its locus. 

Figure 1a. The left-hand ordinate represents the number of world cities of  
the Ancient World, while the right-hand ordinate represents  
the number of world cities in the Classical World with the upward 
right-pointing arrow representing the increase in world cities of  
the Modern Age. 
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Figure 1b. This graph is a semi-logarithmic representation of the data depicted 
in Figure 1a. The scale of the minimum total populace living in world 
cities for each of the ages represented reveals a difference by an 
increase in an order of magnitude as one progresses through the 
five thousand year period to the present. Note that the question 
mark at 2600 BCE represents a lack of available data. The ordinate 
scale in the following successive orders of magnitude, 104, 105, 
and 106, all representing population size. 

 

The model 

The intent of this model is to provide a tool by which parameters can be gener-
ated that characterize the state of the world system with respect to the degree of 
urbanization, the magnitude of the world system population, and the degree 
of connectedness of the world system. The model depends on three fundamen-
tal assumptions, first, that a world system does in fact exist and has existed over 
historical time and is global in extent, an assumption that is on (reasonably) sol-
id ground, second, that the distribution of urban areas is Pareto-like, i.e. as de-
scribed in the Introduction, that there are many urban areas that are small, while 



Tony Harper 17 

there are a few large urban areas, and, third, that the distribution is scale free. 
Explicitly, this distribution can be described by the following equation: 

F = αC-γ,                                              (Eq. 1) 

where F represents frequency, α represents the maximum size of an urban area 
raised to the (positive) gamma power, C represents the class size of a given ur-
ban area as measured by its population, and γ is the exponent and is a measure 
of connectedness between urban areas as per the third assumption.   

The total population of the world system, T, is then the sum of the world 
system urban population Tu, and that portion of the population existing rural-
ly, Tr. An equation can be derived (see Appendix for the relevant mathematics) 
which relates the ratio of largest to smallest urban size, a, the global population, 
T, and gamma, γ, the exponent of Eq. 1, which represents the degree of connec-
tivity between urban areas. This equation is: 

aγ C0
γ – 1 – a – (γ – 1)T/ C0 = 0  (Eq. 18 of the Appendix) 

Note that the symbol, C0, represents the smallest urban size and is held constant 
in value at 100. It should also be apparent that Eq. 18 has a single dimension, 
population number, in this case of people. In other words, while a and the ratio, 
T/C0, are dimensionless, C0 is not; it has the dimension noted above. Data for 
both T and the maximum urban area size over the last five thousand years 
(Chandler 1987; Modelski 2003; and the US Census Bureau), and then γ may 
be computed. Using the values of γ, T, and a = Cmax/C0 acquired from the data 
set mentioned above, the state of the world system can then be plotted over the 
last five thousand years. However, Eq. 18 may also be used to generate a plot 
of all possible states of the world system, and this plot may then be used in 
comparison with the actual plot mentioned previously to determine what com-
binations of γ, T, and a are permissible and what are not. The question may 
then be posed: Why are certain sets of γ, T, and a functional while others are 
not? First, however, it will be important to generate the theoretical landscape.  

The theoretical landscape of the world system  

The theoretical surface generated by Eq. 18 (see Figure 2) represents a surface 
in three-space with the axes x = a, y = γ, and z = T/C0. However, the log trans-
form of Eq. 18, ln[aγC0 

γ-1 – a] – ln[(γ – 1)T/C0] = 0, is to be used here so that 
the data having lower orders of magnitude could be displayed appropriately. 
For instance, the global population at 3000 BCE has been estimated at fourteen 
million, whereas one thousand years later it is twenty-seven million, and  
a thousand years further on, fifty million. In that same period of time the max-
imum urban size changes from forty thousand to eighty thousand in 2800 BCE 
and 2300 BCE and then to one hundred thousand by 1000 BCE. If, however, 
the span of the Common Era is considered, i.e. the last two thousand years,  
the global population changes from approximately one hundred and seventy 
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million to over six billion and in the same period of time the maximum urban 
size increases from eight hundred thousand to over twenty million. Represent-
ing this last set of figures dwarfs the other data, e.g. by a factor of five hun-
dred with respect to the maximum urban area of 3000 BCE. It should also 
be kept in mind that the surface in Figures 2, 3, 4, and 5 was determined by 
computing the zeros for Eq. 18. Also, when doing so the upper and lower 
bounds for a, γ, and T were determined empirically, specifically they are:  
400 < a < 23,000, 1 < γ ¸1.6, and 14,000,000 < T < 6,000,000,000. 

Figure 2.  This figure represents the surface of Eq. 18, i.e. the theoretical 
surface of the world system in three dimensions. The x-axis 
represents the magnitude of the variable, a, the y-axis represents 
the magnitude of gamma, and the z-axis represents the magnitude 
of the variable, T. 

 

This surface exhibits some important characteristics. It is in general  
L-shaped with a slight downward crease toward low values of T and a and 
higher values of γ. The upright portion of the L-shape is a surface that slopes 
steeply toward a sharp boundary with the horizontal portion of the L-shape.  
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The angle of this junction will become clear in the view of γ v. T in Figure 4 
which reveals a very clear L-shape. In Figure 3, γ v. a, the shape appears fan-
like, and in Figure 5, a head-on view of the surface a similar fan-like appear-
ance is revealed. In the following section it will be clearly shown that, while 
this surface is considerable, the portion actually occupied by the world system 
over the last five thousand years is quite restricted. 

The morphology of the world system three-dimensional landscape will 
now be considered in terms of three plane views, that of x-y, z-y, and z-x as 
represented in Figures 3, 4, and 5. Viewed in the x-y plane, i.e. a plane repre-
senting a plot of γ v. lnT, the entire plane is occupied with two notable fea-
tures, the aforementioned upright and horizontal portions of the L-shape and 
also an attenuation of the horizontal member as γ approaches one. In the y-z or  
γ v. lnT/C0 plane the plot represents the distinctly L-shaped form with the pre-
viously mentioned attenuation. In the a – lnT/C0 plane the plot reveals a distinct 
fan-shape with the attenuated portion of the graph extending toward the viewer. 

Figure 3.  This figure represents a two-dimensional view of the theoretical 
landscape representing only the magnitudes of gamma and a.  
The y-axis representing gamma is horizontal, and the axis 
representing a is vertical. Note that as a increases, gamma 
decreases. 
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Figure 4.  The relationship between gamma (y) and T (x), the world system 
population, is represented here. Note that the shape of this graph is 
that of an L and that the horizontal portion attenuates as gamma 
approaches 1. The general shape of this graph suggests that 
gamma and T are inversely proportional. The significance of this will 
be discussed in a later section. 

 

With regard to what a, γ, and T represent in Eq. 18 the morphology of the theo-
retical surface suggests the following. As global population increases so does 
urbanization, at least as a broad trend predicted by the nature of this surface. 
However, in both the case of increase in a or increase in T with respect to γ,  
γ will decrease. This can be confirmed by considering Eq. 18 where the term  
(γ – 1)T clearly implies an inverse relation between T and γ, and expressing T 
as a function of a gives: T = [C0/( γ – 1)][a – aγC0

γ-1], where as γ increases, 
T decreases, and since T and a are directly proportional, then a is inversely pro-
portional to γ. 
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Figure 5.  The relationship between a (x) and T (z) is represented in this figure. 
While this quadrant is not fully occupied by the surface, it should be 
apparent by Eq. 18 that a and T are directly proportional. 

  1.6
  1.4 
 1.2 
1.0 

 

In summary, the three-dimensional plot of Eq. 18 represents an L-shaped sur-
face with a gradually attenuated horizontal portion. Further, a and T are directly 
proportional to each other but both are inversely proportional to γ. The signifi-
cance of this will be addressed in the section "Discussion and implications of 
the world system trajectory". 

The world system trajectory with respect to γ, T, and a 

The previous section presented a view of the theoretical landscape of the world 
system as defined by the equation, aγC0

γ-1 – a – (γ – 1)T/C0 = 0. In this section 
as defined by the data on γ, T, and a listed in Table 1 to be found in the Appen-
dix the actual trajectory of the world system will be described. The description 
will be given in pair-wise relationships, i.e. a = f(γ), T = f(γ), and T = f(a). 
In each relationship a graph of the independent and dependent variable will be 
presented and then discussed. 
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Figure 6 represents the graph of a = f(γ), where each point represents  
the position of the world system, and each line connecting points represents the 
estimated distance that the system took in order to reach the next position in 
the sequence. This same procedure will be used to represent the remaining 
two relationships, T = f(γ) and T = f(a).  Again, please note that the graph it-
self is not rectilinear but rather semi-logarithmic, with the abscissa being lin-
ear and the ordinate being logarithmic. This is also the case for T = f(γ) but 
not for T = f(a), as that is double logarithmic relationship. Also note that 
since time is not represented by either axis but is implicit in the relationship, 
important temporal landmarks have been represented, e.g. 3000 BCE, the be-
ginning of the plot, 900 BCE, et al. 

Figure 6. The trajectory of the world system with respect to gamma, x-axis, 
and lna, y-axis, exhibits an inverse relationship. There are two 
broad sub-trends to note here, that there are two periods of 
oscillation termed search patterns and periods of continuous 
change in which gamma shows continuous decrease, one 
extending from the first search pattern to the second, from 300 BCE 
to 300 CE and from 1800 CE to 2000 CE.  
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This graph has a number of trends and characteristics which will be noted in 
turn. The first of these is that there is a broad inverse relationship between 
gamma and Cmax/C0 (= a). This is predicted by the equation itself and repre-
sented in the graphs of the previous section and suggests that any increase in a 
implies a decrease in gamma, the implications of which will be discussed in the 
following section. It is comforting however to have empirical data suggest 
the same trend. However, on a smaller scale there are a number of circum-
stances where this relationship does not hold.  

Within this broad inverse trend between γ and a there are three sub-trends of 
significance. The first of these is that the graph is not continuous, but is discon-
tinuous with two periods of oscillation between increasing a and decreasing 
gamma and decreasing a and increasing γ. These oscillatory periods represent 
considerable periods of time amounting to approximately one thousand years in 
each instance. Within these periods of oscillation there are segments in which 
there is no change in a but there is an increase in γ, two in the first oscillatory 
period bounded by 2500 BCE and 300 BCE, and one terminating the second 
period and beginning at 1300 CE. The existence of these three anomalous seg-
ments suggests that the data represented in Figure 6 are not simply artifacts of 
aγC0

γ-1 – a – (γ – 1)T/C0 = 0. These segments are real and important to the un-
derstanding of the world system trajectory.   

Punctuating these two periods of oscillation are two (and possibly three) pe-
riods of continuous change. The equivocalness of the previous sentence is in all 
probability an artifact of the available data, however, as graphically represented 
there are only two pronounced periods of continuous change, one extending 
from 300 BCE to 300 CE and the current one that is now ending but extends 
from 1800 CE to the present. A third may exist from 3000 BCE to 2500 BCE, 
and if so, these three periods of continuous change and two periods of oscilla-
tion broadly, and only broadly, conform to Modelski's model of ages of growth 
interspersed between ages of reorganization. Even so, each period of continu-
ous change represents an increase in a with a concomitant decrease in gamma. 

A similar general pattern to that of a = f(γ) of a period of oscillation punctu-
ated with a period of (relatively) continuous increase is evident when consider-
ing the graph of lnT = f(γ) (see Figure 7). This pattern is also in overall form an 
inverse one, i.e. as T increases, γ decreases and vice versa. Over time then γ de-
creases from a value of just less than 1.6 to one just under 1.25, and during this 
time, five thousand years, T increases by three orders of magnitude, a condition 
that may change to four orders of magnitude by the end of this century.  
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Figure 7.  The trajectory of the world system with respect to gamma, x-axis, and 
lnT, y-axis, is represented here. It should be noted that while  
the same general trend and sub-trends are represented here as in 
Figure 6, during the search pattern periods there is a significant hori-
zontal change in gamma with little or no change in T. This would 
seem to imply that these search-pattern episodes involve change in 
connectivity with respect to the degree of urbanization but in the ab-
sence of marked change in T, i.e. it is as if the world system is being 
re-packaged without a change in the over-all size of the system. 

 

Within this broad inverse trend of increasing T with decreasing γ there are two 
oscillatory periods, not unlike search patterns, and similar in general form and 
identical in temporal limits to those noted in a = f(γ), in which there is consid-
erable change in γ with little change in T. Also, the change in γ with respect 
to T in the graph of T = f(γ) alternated between positive and negative slope, 
where as the change in γ with respect to a was always negative in the graph of  
a = f(γ). Each of the search-pattern like structures in Figure 7 is separated by  
a period of nearly continuous change as they are in lna = f(γ) and of course with 
the similar temporal limits. The first search pattern extending from 3000 BCE 
to 1000 BCE includes a period of change in T without any change in γ, so it 
may be more reasonable to recognize two search-patterns during this time, an 
older one extending from 3000 BCE to 2000 BCE and a briefer one from 
1500 BCE to 1000 BCE. Both of these periods of continuous change represent  
a change in γ of about –.5. Several so-called Dark Ages are found embedded 
within these search-pattern periods, the two most notable being the collapse of 
the Late Bronze Age and the Dark Age (= Age of Reorganization) occurring af-
ter the collapse of the Roman Empire.   
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The graph of lnT = f(lna) (Figure 8) differs in general pattern from that of 
the two previous graphs in that a and T are directly proportional to each other.  
On a log-log plot the pattern exhibits an essentially linear trend from 3000 BCE 
with T being approximately 14 million, and a being approximately four hun-
dred to 2000 CE with T being approximately 6.2 billion and a being approxi-
mately 23 thousand. However, as in the two previous graphs there are clearly 
two search-pattern periods, identical in temporal extent to those represented in 
the two previous graphs, each one associated with the plateaus of the Modelski 
graph (see Figure 1). As previously noted in the description of the relationship, 
lnT = f(γ), it is these search-pattern periods that are also associated with periods 
of so-called societal collapse. Also characteristic of each search pattern is con-
siderable change in a with relatively little change in lnT. There are also two 
broad periods of continuous change, one extending from 900 BCE to 300 BCE 
and the second from 1000 CE to the present. Both periods of increase are punc-
tuated by a century of rapid change with essentially no change in lnT. Interest-
ingly, the second such punctuation is actually associated with a slight decrease 
in lnT.  

Figure 8a. The relationship between lna, x-axis, and lnT, y-axis, represented 
here is clearly linear with a positive slope, however, the antilog trans-
form is a power function with an exponent less than one as can be 
seen in Figure 8b. 
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Figure 8b. This is simply the plot represented in Figure 8a fitted with a regres-
sion line. As previously noted the antilog transform gives the power 
function: T = 11.5C.873 (where C is the anti-log transform of  
the x-axis variable, lnC) which implies that the fraction of the popu-
lation living in urban settings will increase with increasing T.  

 
It should be noted that the periods of oscillation identified in Figures 6, 7, and 8 
of this paper share significant similarities with Figures 7 and 10 of Korotayev 
and Grinin (2006). Both sets of graphs are double-logarithmic1 and show oscil-
latory behavior of the world system over approximately the same period of 
time, 200 BCE to 1500 CE. However, the graphs in this paper also represent an 
earlier set of oscillations approximately over the period, 2000 BCE to 1000 
BCE. In Korotayev and Grinin's paper the axes are either the logarithm of meg-
acity size or megacity index (x-axis) and the logarithm of developing and ma-
ture state area (y-axis). While state area is not represented in Figures 6, 7, and 8, 
the megacity size is and it is compared either to γ or to the logarithm of world 
population. The significance of this similarity is that both sets of graphs repre-
sent different aspects of the same underlying process; according to Grinin and 
Korotayev, this is a series of phase transitions between attraction basins corre-
sponding to qualitatively different levels of the world system's sociopolitical 
and technocultural complexity. 

Discussion and implications of the world system  
trajectory  

The previous section involved a detailed description of the world system trajectory 
as it moved through the theoretical three-dimensional space defined by the vari-
ables, T, a, and γ. This section will discuss the significance of these trends, offer 
some explanation of their mechanics, and indulge in some predictions. 

                                                           
1 Note that the exponent, γ, is a logarithm. 
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From the description of the data it is clear that at least with respect to 
the three variables, T, a, and γ, and their relationship defined by:  
aγC0

γ-1 – a – (γ – 1)T/C0 = 0, that both T and γ and a and γ are inversely propor-
tional, while T and a are directly proportional. That this is logically consistent 
is not difficult to show in that if T α 1/ γ and a α 1/ γ, then T α a. However, why 
should this be in reality? With regard to the function, F = αC-γ, as γ increases  
F decreases, and if γ represents a measure of connectivity, then it should be ex-
pected that as connectivity increases in the world system both T and a should 
increase, consequently this will only occur as γ decreases. Further, the direct re-
lationship between T and a is intuitively easy to grasp, since urbanization seems 
to be directly dependent on global population, and, empirically, as T ap-
proaches ten billion a larger and larger proportion of T becomes urbanized. 
This can be shown by Eq. 23 (see Mathematical Appendix for the derivation): 
Tu/Tr = (a1-γ – 1)/(1 – C0

γ-1) (Eq. 23), and by its graph (Figure 9). 

Figure 9. The ratio of Tu/Tr, y-axis, with respect to time shows that as a,  
x-axis, and gamma change over the 5000 year period represented 
by the data the magnitude of the numerator, Tu, increases as  
a greater rate than the denominator, implying that the degree of ur-
banization has increased over time.  

 

Also associated with these broad trends is the fact that the world system trajec-
tory occupies very little space within the bounds of the three variables. What is 
it then that constrains this trajectory? Clearly, the relationship defined by 
Eq. 18 may offer some insight, part of which is explained in the following par-
agraphs, but, for instance, no period of continuous increase spans rather than 
more than four hundred years, and no period of change in γ occurs over a range 
greater than .5. Why is this? These questions are posed here so that the remain-
ing paragraphs in this section can be considered within the context of imposed 
but as yet identified constraints on the system. 
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As was previously noted, within these broad trends there are two sets of pat-
terns, each in all probability dependent on the other. I refer to the two periods 
of continuous increase punctuated by two periods of what has been labeled as 
search-pattern behavior on the part of the world system. It is these aspects of 
world system behavior that will be (partially) analysed here. Also as previously 
noted the search-pattern periods have embedded within them what Modelski re-
fers to as ages of reorganization. How are these ages of reorganization related to 
the disjunct search patterns exhibited by the world system trajectory? 

These questions will be addressed by assessing each of the following in 
turn: the magnitude of change of each of the variables with respect to Eq. 18, 
the rate of change of gamma with respect to gamma itself, the relationship be-
tween gamma and preceding gammas, specifically γn+1, γn+2, and γn+3, the scale 
free nature of the trajectory, regressions of γ with respect to both T and a, and 
sine series fits of the residuals of  γobserved – γexpected. 

It was previously emphasized that while the function represented by Eq. 18 
provides a surface that characterizes all possible states of the world system,  
the actual trajectory of the world system occupies a very limited portion of this 
surface. Is this restricted domain a consequence of the magnitude of cost of 
changing a given variable of the function represented by Eq. 18? After all, there 
appear to be periods of change in the world system trajectory in which either  
γ changes with little change in the other two or a changes under the same condi-
tion, or T does likewise. The magnitude of change of each of the variables can 
be represented by the partial derivative of the function with respect to a given 
variable. What follows is a brief analysis of these partial derivatives over time.  

The evaluation of Eq. 18, f(γ, a, T) = aγ C0
γ – 1 – a – (γ – 1)T/ C0 = 0, with 

respect to each of the partial derivates for each of the variables is as follows:  
∂f/∂γ = aγC0

γ-1(lna + lnC0) – T/C0, ∂f/∂a = γaγ- 1C0
γ–1 – 1, and ∂f/∂T = – (γ – 1)/C0. 

It can be shown that the magnitude of ∂f/∂γ > ∂f/∂a > ∂f/∂T. This can be de-
monstrated as follows: Since aγC0

γ-1 > aγ- 1C0
γ-1, where a > 100, C0 = 100, and 

γ > 1, and since the sum, lna + lnC0, is greater than γ, and noting that  
aγ C0

γ – 1 – a = (γ – 1)T/ C0, and logically that (γ – 1)-1[aγ C0
γ – 1 – a] = T/ C0, 

then aγC0
γ-1(lna + lnC0) > (γ – 1)-1[aγ C0

γ – 1 – a].2 Since  aγC0
γ-1(lna + lnC0) >> 

T/ C0, and since 1 << γaγ- 1C0
γ-1, then ∂f/∂γ > ∂f/∂a, and since ∂f/∂T < 0, then 

∂f/∂γ > ∂f/∂a > ∂f/∂T.  
Assuming the logic the previous paragraph holds, it should be expected then 

that change in γ will have the largest effect on the trajectory of the world sys-
tem, while a change in T will have the least effect. This implies that the distri-
bution and connectivity of urban areas of the world system will have a greater 
impact on the system than will a change in the magnitude of the total popula-
tion of the world system. This can be seen graphically in Figure 10 which rep-
resents the values of each of the partial derivatives computed for the state of 
the system per century over the 5000 year period for which there are data on  
the state of the world system. 
                                                           
2 Empirically, (γ – 1)-1 ~ 5 or less, while lna + lnC0 ~ 10 or greater. 



Tony Harper 29 

Figure 10. This set of figures shows that the trajectory of the world system is 
most greatly affected by changes in gamma with significantly less 
effect by a. Reading from top to bottom the graphs, a, b, c, and d 
are respectively ∂f/∂γ varying γ and holding all else constant, ∂f/∂a 
under the preceding conditions, ∂f/∂γ varying a from 400 to 24,000 
and holding all else constant, and ∂f/∂a under the preceding condi-
tions. Note that changes in T, which are not represented, have  
the least effect, since they are negative.  

a. Note that the y-axis has been adjusted to a natural log scale so 
that the magnitude of change represented in this graph is greater 
than the linearized scale in graph b. 

 

b. 
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c. In the graph above the y-axis is scaled from 106 to 107, 
while the scale in the graph below is linear. 

 

d. 

 

Each of the points on the world system trajectory represents a specific state of  
the world system as defined by F = αC-γ. If we consider a logarithmic plot  
of F = αC-γ, i.e. lnF = lnα – γlnC, the plot represents a triangular space on loga-
rithmic axes bounded by the line represented by the previous equation and by 
the segment of the ordinate from ln 1 to γlnCmax and the segment of the abscissa 
from ln 1 to lnCmax. Note that as long as γ > 1 the bounding ordinate segment will 
be greater than the bounding segment of the abscissa. There are three ways to 
change the area of this triangle: 1. To change lnα (=γlnCmax). 2. To change lnCmax. 
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(Any change in γ will automatically bring about a change in the magnitude of 
the bounding segment of the abscissa.) 3. To change both. As the world system 
moves along its trajectory, what is the strategy used? Which variable is changed, 
or is the mixed strategy employed, and, if so, what is the mixed strategy? 

It will be instructive first to note the state of the world system as reflected 
by the relationship between α, Cmax, and γ at regular points over the five thou-
sand year time span being investigated. In this instance one thousand year in-
tervals have been chosen to reflect the broad trend of world system change (see 
Figure 12. The absolute value of the slope of each line is the value of γ as 
a consequence of the magnitude of both α and Cmax for that specific century. 
With the exception of the centuries 3000 BCE and 2000 BCE all sets of α, Cmax, 
and γ are unique. This of course implies that the position of the world system is 
unique and has evolved, i.e. changed, over time. Also, and not unexpectedly, as 
the world system progresses over the last five thousand years, there is an in-
crease in the position of both intercepts, i.e. as both intercepts depend on  
the magnitude of the maximum urban area of a given point in time, Cmax, both 
intercepts increase as a consequence of the increased degree of urbanization 
over recorded history. However, while the degree of urbanization of the world 
system has increased over time, it has done so far from the point(s) of equilibria 
of that system, and in fact the world system is a non-equilibrium system. 

If Eq. 18 is modified by multiplying through by C0, then this equation becomes, 
Cmax

γ – Cmax –(γ – 1)T = 0 (Eq. 24), and if this modified equation is then partially 
differentiated with respect to γ the partial derivative is: ∂f/ ∂γ = Cmax

γln Cmax – T. 
Further, by setting this partial derivative equal to zero and then solving for γ  
the following equation is produced: γ = [ln Cmax]

-1ln[T/ln Cmax] (Eq. 25). This 
last equation gives the equilibrium value of γ, i.e. γeq, and can then be used to 
compute γeq for each value of Cmax and T per century over the period of time for 
which the world system is being analysed in this paper. Interestingly, when γeq 
is computed in this way, the values of γeq do not match γo, the observed val-
ues for gamma, but instead vary in a consistent and linear way from the ob-
served value of gamma. The consistency of this difference is shown by re-
gressing |γo – γeq|, ∆ γ, against γo, which gives: ∆γ = .257γo – .230 (Eq. 26.) and 
has an r-value of .992, which implies an exceptional fit. This relationship can 
be seen graphically in Figure 11. This then is one more line of evidence that 
suggests that the trajectory of the world system is constrained.  
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Figure 11.  

 

NOTES: The graph above represents the relationship between γo on the x-axis and ∆ γ 
on the y-axis. As can be seen by the linearity of the data and the value of r = .992,  
the data not only exhibit a linear trend but do so with very little dispersion about  
the line: ∆ γ = .257γo – .230. This implies significant constraint on the trajectory of the 
world system.  

Unsurprisingly, if γeq is used to compute either the equilibrium value of Cmax 
or T, while using the observed value of the other variable, the magnitude of ei-
ther varies consistently from the observed values of either. Specifically, when 
To, the observed value of the world system population, is compared with Teq, 
given that Teq can be computed by: Teq = [Cmax

γ – Cmax]/(γeq – 1), a linear re-
gression of Teq v. To is produced, Teq = .3378 To – 6246618.955, and when the 
two sets of data, To and Teq, are compared using a 2-sample t-test the p-value is 
.1175, clearly indicating a difference in the two lists of data, To v. Teq. In a simi-
lar fashion using the observed value for T and the appropriate value for γeq and 
solving Eq. 24 for Cmax yields equilibrium values larger than the observed val-
ues, and these values vary systematically with observed values of Cmax. This is 
a consequence of the reduced value of γeq. The regression of Cmax(o) against 
Cmax(eq) yields: Cmax(eq) = 25.3 Cmax(o) – 1.02E+7 with an r value of .993, again an 
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exceptionally close fit. The computed values of Cmax and T based on the equilib-
rium values of γ computed from Eq. 25 are significantly different than the values 
actually exhibited by the world system and clearly imply that the world system is 
a non-equilibrium system.  

Since there is a consistent difference between observed and expected, i.e. 
equilibrium, values of γ and also between computed values of both Cmax and T, 
then, unquestionably, the world system is a non-equilibrium system, and it is 
appropriate to ask what factors are contributing to this consistent difference be-
tween observed values and predicted equilibrium values. Ball (2008) suggests 
that non-equilibrium systems are maintained away from equilibria by compet-
ing processes, and perhaps an extension of the current research would be to 
identify potential opposing processes and then assess their significance with re-
spect to changes in gamma. For instance, the relationship between urbanization 
and de-urbanization or the relationship between technological innovation and 
carrying capacity might be worthy first choices, as would the cyclical nature of 
societal processes as demonstrated by Turchin and Nefedov (2009), although 
the significance of phase transitions that the world system has experienced in 
the past should also be considered in that whatever caused the phase transitions 
suggests an imbalance between those competing processes and may in fact 
make those processes more identifiable. 

Even though a predictable difference exists between γo and γeq over the 
course of the last 5000 years Eq. 26 suggests that as γo decreases so does 
∆γ, and since historically γo has decreased over the last 5000 years so also 
has done ∆γ. At what point will γo and γeq converge? This is easy enough to 
answer by setting Eq. 26 equal to zero. There is a convergence point be-
tween expected and observed γ when γo = γeq = .8949, and this convergence 
point is beyond the extinction point of γo = 1, i.e. when γo = 1, then Eq. 24 
becomes: Cmax

1 – Cmax – (1 – 1)T = 0, and this obviously holds for any val-
ues of Cmax

 and T. In other words, at no time between 1 < γo ≤ 1.6 will the 
world system ever be at equilibrium, other than in the face of complete col-
lapse.  Also, as γo decreases the magnitude of the maximum urban area in-
creases. 

It will be instructive first to note the state of the world system as reflected 
by the relationship between α, Cmax, and γ at regular points over the five thou-
sand year time span being investigated. In this instance one thousand year in-
tervals have been chosen to reflect the broad trend of world system change (see 
Figure 12). The absolute value of the slope of each line is the value of γ as 
a consequence of the magnitude of both α and Cmax for that specific century. 
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With the exception of the centuries 3000 BCE and 2000 BCE all sets of α, Cmax, 
and γ are unique. This of course implies that the position of the world system is 
unique and has evolved, i.e. changed, over time. Also, and not unexpectedly, as 
the world system progresses over the last five thousand years, there is an in-
crease in the position of both intercepts, i.e. as both intercepts depend on  
the magnitude of the maximum urban area of a given point in time, Cmax, both 
intercepts increase as a consequence of the increased degree of urbanization 
over recorded history. 

Even though the degree of urbanization has increased over time it has not 
done so in an even or constant rate. As mentioned previously the transition 
from 3000 BCE to 2000 BCE involved no net change in the magnitude of Cmax, 
and observation of all the time-incremented positions of the world system as 
represented in Figure 12 clearly show the influence, the uneven influence, of 
urbanization as represented by Cmax on the position of the world system has 
caused the progress(ion) of the world system itself to be uneven. First, γ is not 
constant over time but shows a broadly decreasing trend; this implies a greater 
proportional change in Cmax than in α. Over the last two thousand years there 
has been relatively little overall net change in γ, e.g. at 1 CE γ = 1.3090, at 
1000 CE γ = 1.2969, and at 2000 CE γ = 1.2460. This also appears to be true of 
the period from 3000 BCE to 1000 BCE where at 3000 BCE γ = 1.4851, at 
2000 BCE γ = 1.5640, and at 1000 BCE γ = 1.4756. The greatest change in γ 
occurred between 1000 BCE and 1 CE, i.e. from γ = 1.4756 to γ = 1.3090, a pe-
riod of time encompassing Karl Jaspers' Axial Age. 
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Figure 12. The relationship, γ = lnα/lnCmax, represented at 1000 year intervals 
showing that the state of the world system changes so that the slope 
of the line increases, i.e. becomes less negative. This is due to 
changes in both lnα and lnCmax. 
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The actual position of the world system line is also not evenly spaced through 
time with the greatest difference represented by the transition from 1000 CE to 
2000 CE. Unquestionably there are two distinctly different states of the world 
system represented on this graph and one period of transition. The first two 
thousand years are represented by a median value of γ = 1.5070 and the last 
2000 years by a median value of γ = 1.2840. The middle one thousand years, 
the period of transition, has a median value of γ = 1.3923. It should be noted 
that the differences between the three medians is .1147 between the median of 
the first two thousand years and the middle one thousand years and is .1083 be-
tween the median of the middle one thousand years and the median of the final 
two thousand years. Quite obviously these differences are relatively close in 
magnitude suggesting changes of relative magnitude in the world system po-
sition.  

In assessing the strategy used by the world system with respect to state 
space as defined previously several portions of the trajectory will be consid-
ered. These regions include portions of each search pattern, including sets of 
three data points increase in involving a decrease in γ and then an increase, 
a set that involves continuous increase in γ, another that involves continuous 
decrease in γ, and a set that involves a continuous increase from the first search 
pattern to the second.  

Figures 13 and 14 represent increases in γ, while Figures 15 and 16 repre-
sent decreasing values of γ. In the case of Figures 13 and 14 the initial seg-
ments, from 3000 BCE to 2900 BCE and from 700 BCE to 600 BCE respec-
tively, the change involved a decrease in γlnCmax and an increase in lnCmax, 
whereas in Figures 15 and 16, changes from 2300 BCE to 2200 BCE and 
2100 BCE to 2000 BCE the reverse occurred; γlnCmax increased, and lnCmax 
decreased. In other words, when γ either increases or decreases both inter-
cepts change but in the opposite direction, i.e. if γ decreases then γlnCmax de-
creases and lnCmax increases, while the reverse would be true if γ were to in-
crease. Interestingly, the value of the partial derivative of lnF with respect to 
α decreases with increasing α, while the value of the partial derivative of lnF 
with respect to C increases with increasing C. So, increasing lnCmax while de-
creasing γlnCmax causes an increase in ∂lnF/∂α and a decrease in ∂lnF/∂C (see 
Figures 17 and 18). 
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Figure 13. This figure represents the change in the world system position 
as defined by γ, lnα, and Cmax from 700 BCE to 600 BCE. Note 
that γ increases as a function of both a decrease in lnα and an 
increase in Cmax. 
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Figure 14. Here, as opposed to Figure 13, the change is reversed, and γ de-
creases as a function of increasing lnα and decreasing lnCmax.  
The period of time represented is the one hundred years intervening 
2300 BCE and 2200 BCE. 
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Figure 15. This figure represents the effects of the decrease in lnCmax as an at-
tendant change to the increase of the absolute value of γ, which 
causes an increase in lnα during the century from 2300 BCE to 
2200 BCE. 

 
 



The Trajectory of the World System over the Last 5000 Years 40

Figure 16. As in Figure 15 the absolute value of γ increases which causes 
similar changes in the state of the world system, i.e. a reduction in 
lnCmax which causes an increase in lnα, this time during the century 
from 2100 BCE to 2000 BCE. 

 

In the case of continuous change with respect to the world system trajectory 
and considering the two sequences, 400 BCE to 100 BCE and 700 CE to 
1000 CE, both representing continuous decreases in the magnitude of γ over  
a span of 300 years, it would be predicted that γlnCmax should decrease con-
tinuously while lnCmax should continuously increase, and this is exactly what is 
observed (see Figures 19 and 20). Specifically, for the period from 400 BCE to 
100 BCE γlnCmax decreases from 21.97 to 20.31, while lnCmax increases from 
12.68 to 13.82; in the period from 700 CE to 1000 CE, the same trends are ob-
served as γlnCmax decreases from 22.10 to 20.95, while lnCmax increases from 
12.90 to 14.00. It should be noted that there are fewer long term changes in 
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which γ increases. However, if the period 200 CE to 500 CE is considered,  
the reverse trends would be predicted, i.e. an increase in γlnCmax with a con-
comitant decrease in lnCmax. In particular, γlnCmax increases form 20.40 to 
21.61, and lnCmax decreases from 14.00 to 13.12. Again, observations match 
predictions (see Figure 21). 

Figure 17. This figure represents the change in lnF with respect to α and is hy-
perbolic in form but always positive. 

 

Figure 18. This graph indicates that as C increases so does the rate of change 
of lnF. However, the value of the rate of change in lnF is negative. 
This graph and the one in Figure 17 appear to be mirror images of 
one another, suggesting that as urbanization, as represented by 
Cmax, increases both partial differentials reduce in effect.  
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Figure 19.  This graph represents the change in the world system over a period 
of 300 years, from 400 BCE to 100 BCE, in which the absolute val-
ue of γ continuously decreases. As a consequence there is  
a continuous increase in lnCmax and a decrease in γ lnCmax, which 
implies an increase in urbanization. 
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Figure 20.  As in Figure 19 a continuous decrease in the absolute value of γ 
causes an increase in lnCmax and decreases γ lnCmax with the impli-
cation that the degree of urbanization increases during this period. 
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Figure 21. This graph represents the effects of a continuous increase in gam-
ma over the period, 200 CE to 500 CE. As expected, urbanization 
decreased, while the frequency of smaller communities increased. 
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At this point it is worth considering what the system would be like if the changes 
adopted by the world system were not of the mixed-strategy variety. What 
would it mean for γ to increase while keeping lnCmax constant? An increase in 
the value of γlnCmax would be required, and this implies an increase in the 
number of smaller urban areas. On the other hand if γlnCmax were to be held 
constant, then lnCmax would have to be decreased, and as this expression would 
automatically decrease with increasing γ, it is easier to understand this change 
within the context of a change in γ. However, all the evidence suggests that 
both intercepts change, and this may be an accommodation to the cost of 
changing the position of the world system.  In other words, changing γ involves 
both a change in the size of urban areas and also a change in the frequency of 
urban area size classes. It should also be noted that much more time is spent in 
adjustment of both γlnCmax and lnCmax than in increasing population size. Why 
this should be is not obvious but probably involves adjusting to an optimal dis-
tribution of urban sizes and size distributions for a given global population size 
or, at least, global population size range.   

While the rule of thumb with respect to the change in the positions of  
the abscissa and ordinate intercepts is that if Cmax or lnCmax, α and its log trans-
form, lnα (=γlnCmax), increases, there are seven exceptions to this rule of thumb 
in which a decrease in γ, which is usually indicative of an increase in lnCmax 
and a consequent decrease in γlnCmax, is associated with an increase in γlnCmax 
or in one case where an increase in γ is associated with an increase in both 
lnСmax and logically γlnCmax. The following centuries are associated with an in-
crease in γlnCmax and a decrease in γ: 900 BCE, 400 BCE, 600 CE, 1000 CE, 
1900 CE, and 2000 CE, while 1800 CE shows an increase in γ, γlnCmax, and 
lnCmax. 

It is interesting to consider what factors might be at play with regard to 
changes in γ and the attendant changes in lnCmax, and γlnCmax. That lnCmax in-
creases as γ decreases is both logically predictable and empirically verifiable. 
A decrease in the absolute value of γ implies of course an increase in –γ,  
the implications of which are that the largest urban areas increase and the fre-
quency of the smallest collective classes of people decreases. It is as if there is 
a pump that moves the populace of the world system from a less urbanized to 
a more urbanized condition. The inverse, when the absolute value of γ in-
creases, population movement can be thought of as going in the reverse direc-
tion, with urbanization being associated with larger numbers of smaller indi-
vidual urban areas. In circumstances in which both γlnCmax and lnCmax increase, 
the increase in urbanization must be relatively greater than the decrease in γ, 
but also there must be some synergy between smaller and larger urban areas.  

Considering changes in γ alone, and defining γ as γ = lnα/lnCmax, allows dγ 
to be defined as dγ = 1/lnCmax – lnα/ln2Cmax. On the other hand when dγ is plot-
ted against γ using the appropriate values of lnα and lnCmax, the graph (Figure 18) 
may be approximated as linear, and a regression of dγ on γ gives the equation: 
dγ = .135 – .113γ. Consequently, .135 – .113γ = 1/lnCmax – lnα/ln2Cmax, or  
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(.135 – .113 γ)ln2Cmax – lnCmax + lnα = 0. This equation is a quadratic and may 
be solved using the quadratic formula. The solutions yielded give close ap-
proximations for lnCmax and consequently by transformation for Cmax. This 
indicates one more form of constraint on the system. It will now be revealing 
to consider the relationship between sequences of γ, i.e. γn, γn – 1, γn – 2, etc. 

Of the three variables used to characterize the world system, as has been es-
tablished previously, change in γ has the greatest effect on the system. In light 
of the importance of γ to the world system trajectory it will be important to in-
vestigate what the effects of current and past values of this variable will have 
on future values of the variable. This will be done graphically by investigating  
the graphs of γn+1: γn, γn+2: γn, and γn+3: γn. The relationship, γn+1: γn, will be in-
vestigated first. 

In Figure 22 γn is represented on the x-axis and γn+1 is represented on  
the y-axis. With five significant exceptions the trend exhibited by this plot is 
linear and represented by the regression, γn+1 = .866γn + .2197. The five out-
liers, numbered 1 through 5 on Figure 22, represent the following centuries:  
(1) 2000 BCE, (2) 2200 BCE, (3) 2100 BCE, (4) 1900 BCE, and (5) 2000 CE.  
The first three points represent a period of time, 2200 BCE to 2000 BCE, dur-
ing which the Early Bronze Age experienced considerable climatic, economic, 
and social change. There are a number of instances in which societal collapse 
occurred during this time, e.g. the Akkadian Empire, the Old Egyptian Empire, 
and a number of smaller city states such as that found at Tel Leilan, and the In-
dus Civilization. The last two outlying points represent the last two hundred 
years of the world system trajectory. Removal of these outliers from the data 
set gives a linear regression of:  γn+1 = .847γn + .2562, which is not significantly 
different from the previous regression.  

Figure 22. γn, x-axis, is plotted against γn+1, y-axis, in this graph revealing a lin-
ear distribution of points with several notable outliers. 
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The implication of this regression is that there is a clear linear trend exhibited 
by the plot of the total population of points, in other words, that γn+1 depends on 
γn in a simple, proportional fashion. However, if the sequence by which the space 
of the plot in Figure 22 is traced chronologically, then the actual relationship, 
γn+1: γn, is not linear. In fact, the space, when critical points are removed resem-
bles a parabola and potentially may indicate a chaotic system, although this 
point has yet to be confirmed (Figure 22).  

When considering the relationship between γn and γn+2, the relationship is 
unquestionably linear, but with greater dispersion of points (see Figure 23). It 
should be noted that the overall shape of this distribution is dumbbell-like, and 
it should also be noted that this shape is a precursor of the distribution deter-
mined by γn+3: γn. The chronological sequence by which the space defined by 
γn+2: γn is not as revealing as that defined by γn+1: γn. 

Figure 23. In this figure γn, x-axis, is plotted against γn+2, y-axis. In this graph, 
while the primary distribution is linear, there is a clear separation of 
two distinct clusters, to the right side of the graph one associated 
with the Ancient World, and one to the left associated with the Clas-
sical and Modern Worlds. 
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Figure 24. This graph shows clearly that, as with the previous plots, the distri-
bution of points is essentially linear. However, since γn, x-axis, is 
plotted against γn+3, y-axis, there is an even more distinct separa-
tion between the Ancient World on the right hand side of the graph 
and that of both the Classical and Modern worlds on the left than in 
Figure 23. Also note that the transition between these two clusters 
of points occurs with an initially increasing value of the γ:γn+3 which 
moves the graph down and to the right. A similar trend occurs with 
the last three plots ending with the value of γ for 2000 CE. 

 

In Figure 24 above, the plot of γn+3: γn, there are two discrete distributions of 
points and a shared unoccupied region between the two. The larger cluster is 
bounded by 1.37 ≤ γn ≤ 1.57 and for γn+3 the range is 1.39 – 1.57, approximately 
the same, and the lower cluster of points is bounded by 1.27 ≤ γn ≤ 1.42 and 
1.24 ≤ γn+3 ≤ 1.42. The unoccupied region of overlap is bounded in the follow-
ing way:  1.38 ≤ γn ≤ 1.42 and 1.32 ≤ γn+3 ≤ 1.45. The implications of the first 
and third distributions are significant in that they imply limits on the values of 
γn adopted by the world system as it evolves over time. If γn falls within  
the bounds, 1.38 – 1.42 then γn+3, a value of γ characteristic of the world system 
three hundred years on, cannot fall within the bounds, 1.38–1.45. This condi-
tion places limits on the direction of the world system trajectory and suggests 
that the world system is not only limited by sequential values of γ but also by 
values of γ separated by 300 years! Further, the transition from the first, older 
cluster to the second and younger cluster had to involve considerable change in 
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γ over that three hundred year period. For example, (1) is the last point in the 
upper, older cluster, and point (2) is the first in the lower cluster. (1) has the co-
ordinates, 1.43 at 600 BCE and 1.36 at 300 BCE, and amounts to a change in γ 

of –.07. (2) has the co-ordinates, 1.42 at 400 BCE and 1.27 at 100 BCE, 
amounting to a change in γ of –.15. Note also that the changes from 600 BCE to 
400 BCE and from 300 BCE to 100 BCE are respectively –.01 and –.09. These 
values are all great enough to bridge the gap described previously. The gap it-
self may signify a clear difference between the Ancient World and the Classical 
World with respect to the parameters, γ, a, and T, and is suggestive of a differ-
ence in organization and probably reflects differences in technology, communi-
cation, and intellectual paradigms to suggest just three, that separates the An-
cient World from the Classical World. It is worthwhile indicating here that 
points (3) and (4) represent the most recent past and the time that we are in cur-
rently and may be (are) harbingers of a revolutionary change in the position of 
the world system from its current trajectory. Is the world system entering an-
other period of search pattern behavior? Time will tell. 

As has been previously mentioned the world system has two broadly differ-
ent aspects to its trajectory, periods of continuous change punctuated by periods 
termed search patterns. A casual inspection of Figures 3, 4, and 5 will show that 
even though these different aspects occur at different orders of magnitude with 
respect to a and T, to the eye they appear within the context of mental scaling to 
be of the same magnitude. In more formal terms in any of the two-dimensional 
logarithmic plots the distance between any two consecutively chronological 
plots at one order of magnitude is within an order of magnitude of the distance 
between two consecutive points at a different order of magnitude. This casual 
inspection suggests self-similarity of world system behavior and that, as conjec-
tured earlier in this paper, the world system behavior represented by the origi-
nal equation, F = αC-γ, is scale-free. 

In order to demonstrate this, the actual distances between points in Figure 8b 
were calculated by using the Pythagorean theorem here represented by  
the equation:  H = [(a1 – a0)

2 + (T1 – T0)
2]1/2.  (Note:  The value for a0 used to 

calculate H is always the initial value at 3000 BCE.) The magnitude of H was 
then divided by either the corresponding Cmax or T values, and these scale-
normalized values of H were then plotted against time over the five thousand 
year range of the data on these variables. This gives the plot in Figure 25.  
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Figure 25. This graph represents a time series of the normalized changes 
in position of the world system per century over the last five thou-
sand years. Normalization was done by dividing the change in posi-
tion of the world system, a distance computed by Pythagorean 
Theorem, by the size of the maximum urban area of the current 
century. See text for explanation. Of significance is the very obvious 
periodicity of the world system trajectory when represented this way. 

 

Figure 26. This graph reveals the same pattern as in Figure 25. However,  
the change in world system position was normalized by dividing the 
change in position of the world system by the total population of  
the system.  
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There are two aspects of this graph that are striking. First there appears to be 
a repeated pattern, quasi-periodic, with a period of about 1400 years. Second, 
the world system behavior represented by this graph shows steep descent from 
the peak at 400 BCE, and it is tempting to speculate that the world system will 
experience another precipitous change in position within the next one hundred 
years or so based upon the current position of the world system.  

It is also important to note that embedded within this graph are the basic 
features of Modelski's world system graph of world cities and global popula-
tion. Note that at 1000 BCE as with 1000 CE the world system begins a steep 
climb which terminates about 1000 years afterwards. In other words, Model-
ski's Ages of Reorganization are represented in this graph by periods of time 
when there is reduced magnitude of H/Cmax, and the Ages of Growth in Model-
ski's model correspond to periods of increased magnitude of  H/Cmax. There are 
also some other interesting features of this graph. There are periods of rela-
tively little change in H/Cmax such as from 300 CE to 500 CE, and there are pe-
riods of constant change as characterized by the period from 100 BCE to 
200 CE, where H changes is very little and consequently the position of the 
world system is relatively static. Finally and most importantly, the plots of both 
H/Cmax and H/T exhibit similar but not identical trends, with the magnitude of 
the trends being greater for H/Cmax, possibly implying that the trajectory of the 
system is more sensitive to changes in Cmax than it is to T. In light of the previ-
ously demonstrated inequality, ∂f/∂γ > ∂f/∂a > ∂f/∂T, this should not be surpris-
ing as a = Cmax/C0.  

It has been previously established that γ is the most influential variable on 
the trajectory of the world system. Since the trajectory of the world system, 
when normalized to either Cmax or T exhibits a similar and periodic behavior 
over the 5000 year period analysed it will be important to consider the relation-
ship between Cmax and γ and T and γ. To some extent this has already been done 
in an earlier portion of this segment of the paper, and at this point it will be 
briefly treated with respect to the similarity between the two regressions. How-
ever, a linear regression of the natural log-transformed data on both Cmax and T 
with respect to γ may be used to compare the influences of the two variables 
on γ and those regressions may also be used to investigate secondary trends not 
apparent in the original data. 

A linear regression of lnT on γ was calculated giving Eq. 24: γ = 3.7736 – .1106T, 
and this equation was used to generate expected values for γ per T. The residu-
als of each pair of values, observed minus expected, were computed and plotted 
against time to give the graph in Figure 27. Note that while this graph exhibits 
considerable variation there is a clear sinusoidal trend over the time period rep-
resented of 5000 years. Beyond this broad general trend there are several sig-
nificant troughs that correspond to historically documented events. These are 
the Early Bronze Age Collapse occurring between 2200 BCE and 2000 BCE, 
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the European Dark Age from approximately 400 CE to 800 CE, and the Plague 
Centuries from 1200 CE to 1400 CE. While it is important that the negative re-
siduals correspond to collapse-related events, the inverse seems not to apply, 
since the fluorescence of a society occurs over a significant period of time. It is 
interesting to note that the period of time over which the Roman Empire be-
came a world power is represented on the graph by a steep decline. This is also 
the period of time occupied by the Han Dynasty in China, the Kushan state in 
northern India, and the Sassanid Persians, and it is also a time during which  
an incipient Silk Road began functioning. That the temporal pattern of residuals 
over time does not specifically match specific and significant historical events 
should not be considered a weakness of the data, as the data represent global 
changes in γ, T, and a and are therefore system averages. 

The program, Data Studio, was used to generate not only the plot in Figure 27 
but also to generate best-fit circular functions to this data. In Figure 28 a sine 
curve is fitted to the data having an RMSE of .0874. The world system trajec-
tory can then be represented by the equation, R = asin(bT + c) + d, where a, b, c, 
and d are fitted constants. The visual fit of the sine curve to the distribution of 
residuals is distinct, and the period of this fitted curve is 3740 years. Also, both 
florescences and declines of societies occurring during both the crests and 
troughs, e.g. the Late Bronze Age Collapse is associated with a crest, while, 
again, the rise of Rome is associated with a trough. As a final note, we in the 
Twenty-first Century occupy a position on the second crest of this sinusoidal 
trend of the world system and are in the process of transitioning to the descend-
ing side of this curve. 

Figure 27. This figure represents a graph of the residuals of the Eq. 24 and 
exhibits a cyclical pattern which is formally defined by the next 
graph. 
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Figure 28. The cyclical nature of this plot is represented by the equation,  
R = asin(bT + c) + d, in which R, the value of the residuals, is repre-
sented on the y-axis.  

 

If a sine-series fit on this data (see Figure 29) is used instead of a sine fit, then 
the equation generated has the form: R = a0sin[(b0T)/1050 + c0] + d0 +  
+ a1[(b1T)/525 + c1] + d1 and the resulting curve, while it exhibits an overall si-
nusoidal form, has multiple peaks and troughs, three per period, and an RMSE 
of .0708 suggesting a slightly better fit than the sine function alone. The period  
of this more complex sine-series curve is 3800 years. However, since this curve 
gives a slightly more accurate fit, the Late Bronze Age Collapse is now associ-
ated with a minor trough as are the European Dark Age and the Plague Century.  

Figure 29. This is a sine-series fit to the residuals of Eq. 24, is a better fit than 
the sine fit of Figure 28. 
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The same type of analysis can be performed on the relationship, lna on γ, which 
produces similar results (see Figure 30). However, while the sine fit gives 
a predictable curve with a different period, 3280 years as opposed to 3740 
years. Also, the sine-series fit produces a different type of curve (see Fig-
ure 31). These differences can be attributed to the differences between the pro-
cess of urbanization and that of global population growth, and it is important to 
recognize that these curves are out of phase with the process of urbanization 
occurring with a shorter period than that of global growth.  

Figure 30. This graph is of the residuals of lna with respect to gamma over 
time and has the same general form as the graph in Figure 27 with 
some minor differences. These differences, however, do manifest 
themselves in a different sine-series fit than in Figure 29. See Fig-
ure 31. 

 
Figure 31. A sine-series fit of the data represented in Figure 30 is given here. 

Clearly, while this fit gives a closer approximation to the events rep-
resented, there is much that is not coincident with this fit, e.g.,  
the significant troughs toward the end of both the Early and Late 
Bronze Ages. 
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Summary 

The intent of this paper is to present a means of representing the trajectory of 
the world system over the last 5000 years. This is done by first constructing 
a mathematical model based on the assumption that urban area distribution in 
any given time period can be represented by F = αC-γ (Eq. 1). The model based 
on this assumption, aγ C0

γ – 1 – a – (γ – 1)T/ C0 = 0 (Eq. 18), permits both  
the construction of a theoretical landscape, which represents all possible states 
of the world system and also the actual path of the world system based on val-
ues of γ, lna, and lnT. The general morphology of the theoretical landscape is 
one of a mostly flat plane which slopes upward as γ decreases and both lna and 
lnT increase. The theoretical landscape has a critical edge at γ = 0, as at that 
value the equation equals zero regardless of the values of either a or T. It is 
within this framework, this standard of comparison that the actual position and 
trajectory of the world system is analysed.  

It was discovered, by analysing the variables in a pair-wise fashion, i.e. 
lna v. γ, lnT v. γ, and lnT v. lna, that in the instances where both lna and lnT are 
plotted against γ, these relationships are inverse, while lnT v. lna is a directly 
proportional and effectively linear relationship. However, within these broad 
trends there are two sub-trends that are unsurprisingly common to all three 
plots. These are periods of oscillation punctuated by periods of continuous, di-
rected growth. The oscillatory periods are labeled search-patterns due to their 
apparent searching for the appropriate state of the world system that will then 
allow continuous, directed change over several centuries. There are two broad 
periods of these search-patterns, one encompassing the time period associated 
with most of the Ancient World, 2700 BCE to about 600 BCE, and the other 
from 100 BCE to 1800 CE, which includes much of the Classical World, 
the Middle Ages, the Renaissance, and the Modern World to 1800 CE. It 
should be noted here that more could be made of the fine structure of these pe-
riods, however that is not the focus of this paper. 

Both search-pattern periods are defined in terms of their graphical position 
with no special regard to specific historical events. It was previously pointed 
out that both search-patterns include periods of collapse and the attendant Dark 
Ages or Ages of Reorganization to these periods of collapse. While the search-
patterns are characteristic of all plots, it is noted that changes in γ are associated 
with almost no change in the magnitude of lnT, but as γ decreases in absolute 
value a lna increases and vice versa. As was mentioned previously the relation-
ship between lnT and lna is direct and can be represented by the linear equa-
tion, lnT = .873 lna + 11.500. 

There are a number of important implications of these major trends which 
are characteristic of the world system trajectory. Clearly, urbanization is asso-
ciated with increases in global population, and, in fact, T is probably dependent 
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on urbanization for its increase. An important consequence of this dependency 
is that the fraction of non-urban or rural population decreases over time as is 
represented by the equation: Tu/Tr = (a1-γ – 1)/(1 – C0

γ-1) (Eq. 23). Another im-
portant consequence of the world system trajectory is that it occupies very little 
of the theoretical landscape delineated earlier. 

The chief components affecting the position of the world system within  
the theoretical space defined are the relative effects of changing γ, a, and T on 
Eq. 18. It is shown that changing γ as represented by the partial derivative, 
∂f/∂γ, has the greatest influence on the world system trajectory. The implica-
tions of this are far reaching. Since γ is a measure of the distribution of urban 
areas and is also a proxy for world system connectedness, periods of change 
in γ represent periods of change in the distribution of urban areas and conse-
quently in their connectedness. Increases in γ, i.e. in the absolute value of γ, af-
fect the distribution so that there are fewer urban areas with high populations 
and many more with lower populations. This is a process of de-urbanization, 
increasing ruralization, and reduced connectedness within the world system. 
The reverse holds for decreasing values of γ; these periods represent increasing 
urbanization and greater connectedness. 

Change in the world system may be represented in a variety of ways.  
The natural log transform of Eq. 1 gives lnF = lnα – γlnCmax, and for appropri-
ate values of  α and Cmax then it is shown that γ = lnα/lnCmax, and per century 
the state of the world system may be represented graphically by the triangular 
area bounded by the natural log transform of Eq. 1 and the x-axis and y-axis in-
tercepts. Given this graphical representation then the change in the state of  
the world system can be represented by changes in lnα, lnCmax, or both, a mixed 
strategy in other words. It can be shown that when γ decreases lnα decreases 
and lnCmax increases, however when γ increases, the reverse occurs. In other 
words and even in the face of increasing population, T, changes in γ are associ-
ated with a mixed strategy employing change in both lnα and lnCmax. One 
anomaly has been noted, that of the change associated with the change in  
the state of the world system from 1300 CE to 1400 CE where both intercepts 
increase. Excluding this anomalous instance unquestionably the mixed strategy 
imposes a constraint on the trajectory of the world system. 

That the world system has a trajectory suggests that past conditions of 
the world system influence its future position. This effect was investigated by 
considering plots of γn+1 v. γn, γn+2 v. γn, and γn+3 v. γn. As might be expected the 
plot of γn+1 v. γn is essentially linear, however the plots, γn+2 v. γn, and γn+3 v. γn, 
reveal that the data cluster into two discrete sets implying a boundary condition 
between the Ancient and Classical World on the one hand and the Medieval 
and Modern ones on the other. The influence of the magnitude of γ two and 
three centuries later suggests a clear and probably qualitative difference be-
tween the two sets of points. Further, the transition from the older set of points 
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to the set including the current world system suggests a unique pathway be-
tween those two sets.  
 Observation of the plots, lna v. γ, and lnT v. γ reveals a repeating pattern of 
oscillations punctuated by continuous change. If the distance in theoretical 
space over which the world system moves from century to century is scaled by 
dividing by either lna or lnT the graph of these scaled distances over time re-
veals a cyclical trend with an approximate period of 2400 years giving peaks at 
400 BCE and 2000 CE. Both plots give similar patterns in which the largest 
shifts of the world system are succeeded by periods of relative stasis that extend 
over several centuries. It appears that we are currently on the doorstep of such 
a period. 
 The relationship of γ v. lnT was investigated to reveal any secondary trends as 
was the relationship, γ v. lna. The residuals of both regressions revealed similar 
cyclical trends which were then fitted to both sine and sine-series functions. The 
periodicity of these trends ranged from approximately 3300 years to 3800 years. 
The sine function fit of the γ v. lnT data gives a period of 3700 +/–210 years  
with peaks in the middle of the second millennium BCE and now and troughs 
at the beginning of the Bronze Age and the time of Late Antiquity. However, 
this general fit does not account for many of the smaller troughs and peaks in 
the residual-generated graph, e.g., a trough at the end of the Early Bronze Age 
and a peak at approximately 700 CE are associated respectively with a peak and 
a trough of the actual sine function. These and other details are not reflected in 
the sine fit. The sine-series fit of the same data give better but not complete 
resolution suggesting that these trends are predictable. 
 The same sets of trends are observable in both the sine and sine-series fit of 
the residuals of γ v. lna linear regression. The periods for these fits are respec-
tively 3280 +/–220 years and 3290 +/–210 years. It is noted however that while 
the overall trends represented by both sine and sine-series fit are similar, due to 
differences in periodicity, the curves themselves are offset.  Since the periods 
are not similar, the interrelationship of the urbanization and total world system 
population size is not a directly interactive one as is, say, the relationship be-
tween predator and prey. 
 In brief then the following statements may be made about the trajectory of 
the world system over the last 5000 years: 

1. With respect to the variables, γ, lna, and lnT, the world system clearly 
exhibits a non-random pattern or trajectory over the last 5000 years. 

2. In pair-wise analysis of the variable listed in No. 1 similar patterns 
emerge, but with respect to γ in relation to either lna or lnT the relation is in-
verse, while the relation between lna and lnT is direct.  

3. The world system exhibits periods of oscillation punctuated by periods 
of continuous change, the latter always being associated with a decrease in  
the absolute value of γ. 
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4. Change in the magnitude of γ has the greatest influence on the state and 
direction of the world system trajectory. 

5. The world system is a non-equilibrium system. 
6. In natural log phase space the world system can be represented as an ar-

ea bounded by lnF = lnα – γlnCmax, and a change in the nature of this phase 
space involves a mixed strategy of changing both the x-axis and y-axis inter-
cepts, lnCmax and lnα. There is at least one exception to this strategy, that of the 
transition from 1300 CE to 1400 CE. 

7. The magnitude of γ is influenced by prior values of this variable, and  
the graph of γ separated by three centuries on itself reveals a clear separation 
between the (relatively) Modern World and the Classical and Ancient Worlds. 

8. The behavior of the world system, as measured by distance moved per 
century, is shown to be similar at different orders of magnitude scaled by both 
lna and lnT. Specifically, a repeating pattern is evident in which large move-
ments of the world system within the theoretical space defined by Eq. 18 are 
succeeded by periods of near stasis. 

9. The greatest change in γ occurs between 1000 BCE and 1 CE.  
10. Residuals of the linear regression of lna v. γ and lnT v. γ reveal cyclical 

patterns that can be modeled by both sine and sine-series functions. The curves 
produced by these functions are faithful to and coincident with a number of ma-
jor historical events including but not limited to various age-terminating col-
lapses.  

Mathematical appendix 

Derivation of equation 18 
The total population of the world system, T, is then the sum of the world sys-
tem urban population Tu, and that portion of the population existing rurally, Tr. 
Each of these is an integral of F, however, by modifying the integral of the total 
population an expression can be derived that will permit T, a, the ratio of 
the largest urban area to the smallest urban area, and γ, as defined previously, to 
be inter-related: 

T = ∫F = α∫C-γdC,                                    (Eq. 2) 

but with different limits. Tu has the limits, C0 to Cmax,, where these limits repre-
sent the smallest and largest urban, and the definite integral has the form: 

Tu = [α/(1 – γ)][Cmax
1 – γ – 1].                           (Eq. 3) 

Tr has the limits, 1 to C0, and the definite integral is: 

Tr = [α/(1 – γ)][ C0
1 – γ – 1].                            (Eq. 4) 

Note that Cmax can be expressed as a function of C0 in that Cmax is a multiple of 
C0 and can be represented by: 

Cmax = aC0,                                         (Eq. 5) 
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where a is some real number greater than zero. Also note that, assuming that 
there can theoretically be a single largest urban area, then Eq. 1 can be rewrit-
ten as: 

1 = αCmax
-γ.                                            (Eq. 6) 

It follows then that: 

α = Cmax
γ.                                              (Eq. 7) 

In turn and according to Eq. 4, Eq. 6 may be rewritten as: 

α = aγC0
γ.                                              (Eq. 8) 

So, then substituting into Eq. 3 gives: 

Tu = [aγC0
γ /(1 – γ)][ a1 - γC0

1 – γ – C0
1 – γ],                   (Eq. 9) 

and further simplifying gives: 

Tu = [aγC0
γ C0

1 – γ/(1 – γ)][ a1 - γ – 1],                      (Eq. 10) 

which may be further simplified to: 

Tu = [aγC0/(1 – γ)][ a1 - γ – 1].                          (Eq. 11) 

By the same reasoning then Tr may be represented as: 

Tr = [aγC0/(1 – γ)][1 – C0
γ – 1].                         (Eq. 12) 

Since  

T = Tu + Tr,                                         (Eq. 13) 

 then by substitution: 

T = [aγC0/(1 – γ)][ a1 - γ – 1] + [aγC0/(1 – γ)][1 – C0
γ – 1].      (Eq. 14) 

Further rearrangement gives: 

T =  [C0/(1 – γ)][a – aγ] + [aγC0/(1 – γ)] [1 – C0
γ – 1],          (Eq. 15) 

then by further rearrangement: 

T = aC0/(1 – γ) – aγ C0/(1 – γ) + aγC0/(1 – γ) – aγC0
γ/(1 – γ).    (Eq. 16) 

Noticing that the second and third terms cancel and multiplying through by 
(1 – γ)/ C0 gives: 

(1 – γ)/ C0T = a – aγ C0
γ – 1,                             (Eq. 17) 

and a final rearrangement gives: 

aγ C0
γ – 1 – a – (γ – 1)T/ C0 = 0.                           (Eq. 18)* 

  
* Please note that the same equation could be derived directly by integrating over 
the limits, 1 to Cmax, however, it was felt that by doing a piece-meal integration, it 
would be easier to understand where urbanization fits into the larger context of 
the total world system population. Also, it is understood that the distribution rep-
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resented by Eq. 1, F = αC-γ, implies that the largest class, i.e. the class with the 
highest frequency, would be individuals living alone. This is clearly not the case, 
however, in this paper this inadequacy of the model will be ignored. 

Derivation of equation 23 

Recalling that Cmax = aC0, that α = Cmax
γ, and that Tu = α∫ C-γdC over the limits 

C0 to Cmax, then the evaluation of this integral is: 

Tu = [(aγC0
γ)/(1 – γ)][ Cmax

1-γ – C0
γ-1],                   (Eq. 19) 

which simplifies to: 

Tu = [(aγC0
γ)/(1 – γ)] [a1-γC0

1-γ – C0
1-γ],                  (Eq. 20) 

and further simplifies to: 

Tu = [(aγC0)/(1 – γ)] [a1-γ – 1].                        (Eq. 21) 

Using the same reasoning the integral, Tr, can be evaluated over the limits, 1 to 
C0, as: 

Tr = [(aγC0)/(1 – γ)] [1 – C0
γ-1].                       (Eq. 22) 

Since the term, [(aγC0)/(1 – γ)], is common to both Eq. 21 and Eq. 22, the ratio, 
Tu/Tr, becomes: 

Tu/Tr = (a1-γ – 1)/(1 – C0
γ-1).                         (Eq. 23) 

Tables 

CENTURY SEQUENCE T Cmax a γO 

1 2 3 4 5 6 

3000 BCE 0 14E6 40E3 4E2 1.4851 

2900 100 14.95E6 60E3 6E2 1.4245 

2800 200 15.97E6 80E3 8E2 1.3859 

2700 300 17.05E6 70E3 7E2 1.4145 

2600 400 18.21E6 60E3 6E2 1.4470 

2500 500 19.44E6 50E3 5E2 1.4847 

2400 600 20.76E6 50E3 5E2 1.4921 

2300 700 22.17E6 80E3 8E2 1.4227 

2200 800 23.68E6 50E3 5E2 1.5070 

2100 900 25.29E6 10E4 1E3 1.4024 

2000 1000 27E6 40E3 4E2 1.5604 

1900 1100 28.72E6 40E3 4E2 1.5674 

1800 1200 30.54E6 60E3 6E2 1.5047 

1700 1300 32.49E6 60E3 6E2 1.5115 

1600 1400 34.55E6 50E3* 5E2 1.5491 
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1 2 3 4 5 6 

1500 1500 36.74E6 60E3 6E2 1.5250 

1400 1600 39.08E6 80E3 8E2 1.4846 

1300 1700 41.56E6 12E4 1.2E3 1.4280 

1200 1800 44.20E6 16E4 1.6E3 1.3917 

1100 1900 47.01E6 12E4 1.2E3 1.4410 

1000 2000 50E6 10E4 1E3 1.4756 

900 2100 60E6 12.5E4 1.25E3 1.4603 

800 2200 70E6 12.5E4 1.25E3 1.4763 

700 2300 80E6 10E4 1E3 1.5248 

600 2400 90E6 20E4 2E3 1.4322 

500 2500 10E7 20E4 2E3 1.4428 

400 2600 16.2E7 32E4 3.2E3 1.4239 

300 2700 15.6E7 50E4 5E3 1.3606 

200 2800 15E7 60E4 6E3 1.3333 

100 2900 16E7 10E5 1E4 1.2757 

1 CE 3000 17E7 80E4 8E3 1.3090 

100 3100 18E7 10E5 1E4 1.2869 

200 3200 19E7 12E5 1.2E4 1.2699 

300 3300 19E7 10E5 1E4 1.2920 

400 3400 19E7 80E4 8E3 1.3195 

500 3500 19E7 50E4 5E3 1.3793 

600 3600 20E7 60E4 6E3 1.3606 

700 3700 20.7E7 40E4 4E3 1.4170 

800 3800 22E7 70E4 7E3 1.3499 

900 3900 22.6E7 90E4 9E3 1.3211 

1000 4000 25.4E7 12E5 1.2E4 1.2969 

1100 4100 30.1E7 12E5 1.2E4 1.3125 

1200 4200 36E7 10E5 1E4 1.3508 

1300 4300 36E7 15E5 1.5E4 1.3022 

1400 4400 35E7 10E5 1E4 1.3483 

1500 4500 42.5E7 10E5 1E4 1.3657 

1600 4600 54.5E7 10E5 1E4 1.3879 

1700 4700 60E7 10E5 1E4 1.3963 

1800 4800 81.3E7 11E5 1.1E4 1.4112 

1900 4900 15.5E8 65E5 6.5E4 1.2654 

2000 5000 62E8 23E6 2.3E5 1.2490 
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Partial Derivative Table 

T T/C0 γ a ∂f/∂ γ ∂f/∂a 

106 104 1.00 400 –5761 0 

“ “ 1.1 “ 2987 3 

“ “ 1.25 “ 49944 17 

“ “ 1.50 “ 1317048 299 

“ “ 1.75 “ 3.5E13 4949 

“ “ 1.25 400 49944 17 

“ “ 1.25 4000 1287592 30 

“ “ 1.25 12000 5549521 40 

“ “ 1.25 24000 13867614 48 
 
The following equations were used to calculate the values listed in the Partial De-
rivative Table: aγ C0

 γ – 1 – a – (γ -1)T/C0 = 0,  ∂f/∂ γ = aγln(a) + aγ C0
 γ – 1ln C0 – T/C0, 

∂f/∂a = γaγ – 1 C0
 γ – 1 – 1 . 
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Abstract 

That history has a path, a trajectory through time, has been the focus of study by many 
prominent scholars including Marx (1977), Toynbee (1946), Jaspers (1965), Diakonoff 
(1999), and others. It is the intent of this paper to delineate this path as a trajectory of 
the world system through time. The term "world system" is used here as initially de-
fined by Wallerstein (1974) and then modified by Modelski (2003) to represent a sin-
gle, global, world system. This paper addresses the problem of delineating the trajec-
tory of the world system from a more quantitative and mathematical perspective than 
has previously been done. 

Assuming that urban areas through time have a Pareto-like distribution, a mathe-
matical model relating the magnitude of the total world system population, T, the ratio 
of largest to smallest urban area, a, and γ, a measure of the form of the distribution and 
also a proxy for the connectedness of the distribution, is constructed. The model is used 
to graphically represent all possible states of the world system and to plot the actual po-
sition of the world system through time. The actual trajectory has some notable large 
scale characteristics which are discussed. Other smaller scale trends are also noted. 

A partial analysis of the constraints limiting this system is given and includes a con-
sideration of the magnitude of changes in each of the model variables, the relationship 
between changes in the variables, α and C, of the distribution of urban areas, and a con-
sideration of the relationship between γ and future values of that variable removed by 
one, two, or three centuries. The (apparent) scale-free nature of the model is also as-
sessed. Finally, it is noted that the analysis of residuals of the linearized relationships be-
tween γ and both T and a yield cyclical changes with very long term periodicity.  

Keywords: world system, math model, mixed strategy, Pareto-like distribution, search-
pattern, theoretical space, urbanization. 
 


