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Introduction 
A. Empirical models 

The human population of the Earth, NE, attracted much attention after publica-
tion of the seminal work of Malthus who realized that it should exhibit the 
unlimited exponential growth:  
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The fears were partially dispersed by Verhulst who introduced the logistic 
equation,  
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to account for the population dynamics of closed communities. Here, r is the  
growth rate and K is the carrying capacity. This equation accounts fairly well 
for the growth of small communities but it fails to describe the long-time dy-
namics of the human population of the Earth.  

As it was shown in the seminal work of von Foerster et al. (von Foerster, 
Mora, and Amiot 1960), the available to them data could be fairly well de-
scribed by the empirical dependence 
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where  ≈ 1, C = 1.8 1011, and tc = 2026. The corresponding growth rate is: 
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The most striking feature of Eqs. 3, 4 is the divergence of NE and dNE/dt at 
finite time tc. This indicates that the above equations are inappropriate in the vi-
cinity of tc. Indeed, since 1960, the global human population growth has been 
deviating from the hyperbolic dependence indicated by the Eqs. 3, 4; in particu-
lar, the growth rate NE

-1dNE/dt achieved its maximum value of ~ 2.1 % in 1962 
and then decreased steadily. This prompted the search for the functions that ap-
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proximate the hyperbolic dependence given by Eqs. 3, 4 before year 1960 and 
replace them by smoother dependences after year 1960. Several empirically 
found replacements have been suggested, including hypergeometric (Koronovskii 
2000), overlay of several exponential or logistic curves (Hanson 1998), hyper-
exponential (Varfolomeev and Gurevich 2001), delayed logistic curves (Haberl 
and Aubauer 1992; Yukalov, Yukalova, and Sornette 2009), and others.  
The most insightful empirical approach was suggested by Kapitza (1996) who 
modified the Eq. 3 as follows: 
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Here, τ is a microscopic time scale for which Kapitza took the lifespan of 
a generation, ~ 45 years. This modification captures the maximum in the rela-
tive growth rate and assumes that the human population eventually comes to 
saturation. The subsequent studies sought to justify this empirical approach.  

B. Mathematical models 

Models considering the carrying capacity of the Earth 
In order to understand the future trends of the global human population growth, 
several non-empirical mathematical models have been developed. These mo-
dels aimed to derive Eqs. 3, 4 from the "first principles". This approach implies 
that Eqs. 3, 4 are consequences of some plausible scenario while the parameters 
of these equations are still empirical. Most of such models (Artzrouni and 
Komlos 1985; Cohen 1995; Kremer 1993; Komlos and Nefedov 2002;  
Podlazov 2004; Galor and Moav 2001; Korotayev, Malkov, and Khaltourina 
2006) quantified the verbal approach of Boserup, Simon, Jones, etc. who attrib-
uted the accelerating growth of the human population of the Earth, NE, to posi-
tive feedback between the population size and the Earth's carrying capacity, KE. 
Then, in addition to Eq. 2 which accounts for the fast growth of the world 
population, these models introduced an additional equation that accounts for the 
slow dynamics of the population growth resulting from the gradual increase of 
the carrying capacity:  
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The coefficient γ quantifies the rate with which the human race expands the car-
rying capacity of the Earth. In such a way, these models assume two rates of the 
population growth. The fast rate, as derived from Eq. 2, is N-1dN/dt ~ r; while 
the slow rate, as derived from the Eq. 6, is K-1dK/dt ~ γN. As far as r >> γN the 
instantaneous value of the population size is N ≈ K (see Eq. 2, the index E has 
been omitted). Then Eq. 6 reduces to  
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This equation describes an autocatalytic process and its solution is given by 
Eq. 3, where C = 1/γ, tc = ti+1/γNi and ti, Ni are initial conditions. Upon ap-
proaching tc, the population size N increases and the distinction between the 
slow and fast dynamics eventually disappears. In the limit γN >> r, the Eqs. 2, 6 
yield exponential population growth, N ~ ert. 

At present we do not know whether the human population will come to 
saturation in future or will grow continuously, although we want to believe that 
its growth will be somehow limited. The Kapitza's conjecture consists in re-
placing the Eq. 7 by the empirical equation 
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that describes accelerating and then decelerating population growth, whereas 
the population size is eventually stabilized at Ninfty=r/γ. Equation 8 describes 
the dynamic crossover. It operates with the minimal number of parameters: 
r and γ, and it is mathematically appealing. However, this equation cannot be  
easily justified and the reasons for the maximum of the growth rate and for 
the stabilization of the population size remain obscure.  

Models based on the Gross Domestic Product-GDP 
The carrying capacity, being an important parameter of the demographic mo-
dels, can not be measured directly. The model that does not consider explicitly 
the carrying capacity was developed by Kremer (1993) who considered the 
gross domestic product, GDP=N(S + m), as the key parameter that determines 
the slow dynamics of the population growth. Here, N is the population size, 
m is the subsistence level, and S is the surplus product. Kremer related the GDP 
to the level of technological development T as follows: GDP ~ N1T2, where 
1,2 are the exponents that should be found empirically. In fact, Kremer put 
onto quantitative language the verbal approach that had been developed earlier 
by Kuznets, Boserup, Jones, etc. The key assumption of the Kremer's model is 
that the growth of GDP is spurred by the technology growth.  

The original model developed by Kremer is static while Korotaev, Malkov, 
and Khaltourina (2006) developed a family of dynamic models basing on 
Kremer's ideas. In the framework of these models, the dynamic variable that 
quantifies the technological development is the surplus product, S. The simplest 
model considered by Korotaev, Malkov, and Khaltourina consists of two equations: 
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with two empirical parameters: r is the rate of the population growth, and γ has 
now the meaning of the average creative ability of a person. The parameter m 
characterizes the scale of the surplus product S (it can be chosen to be equal to 
subsistence level) and it has been introduced here to be consistent with the no-
tation of the Eq. 1. In such a way, the Eq. 9 is the modification of the Eq. 1, 
while Eq. 10 captures the Kremer's idea. The relation to Kremer's work is even 
more evident if we notice that for 1~1 the definition of the technological level 
by Kremer: T~(GDP/N)1/2 is closely related to the definition of the surplus 
product: (S+m)~GDP/N.  

The relation between N and S can be found by dividing Eq. 9 by Eq. 10. 
This yields N~S. In other words, Eqs. 9, 10 describe the positive feedback be-
tween the surplus product and the population growth – from the one hand; and 
the positive feedback between the increasing population and the growth of the 
surplus product, from another hand.1 The solution of these equations exhibits 
finite-time singularity for N(t) and S(t).  

The field of applicability of Eqs. 9, 10 is evident from their very structure: 
the right side looks as if it were the first term of the power series in the small 
parameter S/m. In other words, Eqs. 9, 10 assume that S/m<<1, i.e. they should 
describe the period before the year 1870 when S/m=1. One can go beyond this 
approximation and modify the Eqs. 9, 10 to extend their applicability range 
above the year 1870. Indeed, if we assume that the surplus product goes to 
creation of new working places, the relation of carrying capacity to surplus 
product is especially simple: K=GDP/m=N(S/m+1). We replace Eq. 9 by the lo-
gistic equation Eq. 2, where K has been  expressed through S and find 
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This equation introduces negative feedback between the population growth and 
the growing population. This has some stabilizing effect and consequently,  
the solution of Eqs. 10, 11 does not diverge. In the long run, the growth rate 
of N comes to saturation, while the growth rate of S is unlimited. The relation 
between N and S can be found by dividing Eq. 10 by Eq. 11. This yields 
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 . The solution of this equation is  

                                                           
1 For negative S, Eq. 10 leads to a paradoxical conclusion. While Eq. 9 predicts population decline 

for negative S (that is quite understandable), the Eq. 10 predicts that if S turned out to be negative, 
then it will continue to be negative, in other words S = 0 is the unstable point. Following this in-
terpretation, the parameter γ characterizes the creativity of a person aimed towards both construc-
tive and destructive goals! In other words, Eq. 10 implies that if some part of humanity started a 
destructive activity, it will pursue it until complete self-destruction. Our understanding of the hu-
man behavior would have produced the following equation: dS/dt = γ N(S+m). Here, if S acquires 
small negative value (for example, as a result of some environmental fluctuation), then S+m is 
still positive and the creativity of the humanity brings S back to be positive. Only for high enough 
fluctuation, such that S+m<0 (as if it were a World war), the inclination to self-destruction finds 
its realization. However, the actual data are in better agreement with Eq. 10. 
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where N0=const. In what follows we analyze the relative growth rates: 
rN=dN/dt:N and rS = dS/dt:S and compare them to the prediction of Eqs. 10–12.  

Figure 1. Relation between the surplus product S/m and the World 
human population N in the same year  
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NOTES: The circles show the data taken from the US Census database, Maddison 
(2001), Kremer (1993). The subsistence level is m=440$ USD. The dashed line is  
the prediction of Eq. 12 with N0=1.65 109. The inset shows the same data in the log-log 
scale. 

Figure 1 shows that the relation between N and S is superlinear and is fairly 
well described by Eq. 12 with N0=1.65 109, the agreement breaks only for  
N>3 109 (this corresponds to years 1960–1970).  
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Figure 2.  World population growth rate, rN=dN/dt:N  
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NOTES: The circles show the data taken from the US Census database, Maddison 
(2001), Kremer (1993). The dashed line is the prediction of Eq. 11 with N0 = 1.65 109 
and r = 0.013. The inset shows the same data in the log-log scale. 

Figure 2 shows that the human population growth rate linearly increases 
with N, achieves its maximum value of rN

max = 0.021 at N ≈ 3 109 and then starts 
to decrease. Equation 11 correctly predicts dynamics of rN at N < 2 109 and de-
viates from the actual data at higher N. 

Figure 3 shows that the World surplus product growth rate linearly in-
creases with N, achieves its maximum value of rS

max = 0.04 at N ≈ 3 109 and 
then starts to decrease. Equation 10 correctly predicts dynamics of rS at  
N < 2 109 and deviates from the actual data at higher N. We conclude that the 
Eqs. 10, 11 extend the range of applicability of the Korotaev, Malkov, and 
Khaltourina model from the year ~1870 to the year ~1960. Since no new pa-
rameters/variables have been introduced, this extension belongs to the same 
family of models. 
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Figure 3.  World surplus product growth rate, rS=dS/dt:S 

0

0.01

0.02

0.03

0.04

0.05

0 2 109 4 109 6 109

r
s

model

World population, N

r
S
=rN/N

0

  
NOTES: The circles show the data taken from Maddison (2001). The subsistence level is  
m = 440$ USD. The data were averaged over the five-year interval. The dashed line 
shows prediction of Eq. 10 with N0 = 1.65 109. 

Figure 4 shows population growth rate rN and the surplus product growth 
rate rS versus surplus product, S/m. Both rN and rS grow with S, achieve the 
maximum at S/m ~ 5−6 (this corresponds to N ≈ 3 109) and then decrease.  
The model correctly predicts initial increase of rN and rS with S (that corresponds 
to S/m < 1) while pronounced deviations from the model occur for S/m > 2. 
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Figure 4.  Comparison of the World population and the World Surplus product 
growth rates  
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NOTES: The data for rS were averaged over the five-year interval. Notice that maximum 
rN and maximum rS are achieved simultaneously, at the same value of S/m. 

Models accounting for the demographic transition 

The maximum in the population growth rate (Figure 2) is usually associated 
with the "demographic transition" (Chesnais 1992) which results from the de-
crease of mortality rate and the subsequent birth rate decrease. Detailed statisti-
cal studies indicate that the reason for decreasing population growth in devel-
oped countries nowadays is the declining birth rate (Ibid.) whereas there is  
a strong anticorrelation between the level of female education and fertility. 
Korotaev, Khaltourina, and Malkov captured this by introducing an additional 
dynamic variable: the fraction of literate population, l. They modified the Mal-
thus equation (Eq. 9) to account for the negative feedback between the popula-
tion growth and the literacy level: 

)l1(rNS
dt

dN
 .         (13) 



        Hyperbolic Growth of the Human Population of the Earth  196

The dynamics of the surplus product remained the same (Eq. 10) while the dy-
namics of l has been described by the following equation: 

)l1(aSl
dt

dl
 ,         (14) 

where a is a new empirical parameter and S is dimensionless (it can be meas-
ured in the units of subsistence level, m). When the initial educational level of 
the population is low, this model predicts accelerating growth of N, S, and l. 
Eventually, when l comes to saturation, N also achieves saturation while S does 
not saturate and grows exponentially. Therefore, this extended model captures 
the non monotonous dependence of rN on N (Figure 2) but fails to account for 
the non monotonous dependence of rS on N (Figure 3). 

Critical assessment of the above models 
The common feature of all previously discussed models is that they describe 
the growth of the World human population growth, GDP, surplus product, liter-
acy, etc. by using ordinary differential equations containing first-order time de-
rivatives. In the framework of these models, the non monotonous dependence of 
the growth rate on time (demographic transition) results from the dynamic cross-
over, i.e. at all times there are several factors affecting population growth and 
these factors operate simultaneously. At small population number, N < 3 109, one 
factor wins and the growth rate increases with N; while for high population 
number, N > 3 109, another factor wins and the growth rate decreases with N. 
When N ≈ 3 109, the gradual transition from one regime to another occurs.  

Several features in real data challenge this picture. First, the transition from 
increasing to decreasing trend in rN versus N dependence is very sharp (Figure 2). 
Second, it is not clear why transitions in rN and rS occur simultaneously, in 
1960–1970 and at the same value of N ≈ 3 109 (Figure 4). Other parameters also 
undergo especially fast change in the same time period – 1960–1970; these in-
clude age structure of the population, the level of literacy, urbanization (Koro-
tayev, Malkov, and Khaltourina 2006), financial indices (Johansen and Sornette 
2001), etc. All these features are more naturally accounted for from another 
perspective – phase transition. While the commonly accepted approaches 
(Korotayev, Malkov, and Khaltourina 2006) focus on time-dependent, dynamic 
properties of the population growth, the phase transition approach focuses on 
how demographic and economic variables depend on control parameters such 
as population or surplus product.  

Is demographic transition a phase transition? 

The notion of phase transition has been developed in the context of condensed 
matter physics. In the system of many interacting particles/agents, when the 
control parameter (temperature, pressure, density, etc.) varies, the system can 
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progress abruptly from the disordered phase where the radius of correlations is 
finite, to the ordered phase, which is characterized by the long-range order. 
This situation can be usually described using the order parameter which is zero 
in the disordered phase and non-zero in the ordered phase. The properties of  
the system as a function of the control parameter are frequently non-analytic at 
the transition point. In particular, the correlation length diverges upon ap-
proaching the phase transition and becomes infinite in the ordered phase. Di-
vergence of many physical properties at the phase transition is related to the di-
vergence of the correlation length. The dynamic properties also undergo  
dramatic changes and the fluctuations grow on the both sides of the phase 
transition (Stanley 1999). The difference between the phase transition and 
crossover scenario is in the following: for the former, the ordered state is 
characterized by an emerging new property – the order parameter (which was 
absent in the disordered state); while for the latter scenario all factors were 
present in both states. 

Phase transitions in social systems such as financial markets, traffic flow, 
etc., were noticed long ago (Montroll 1978; Montroll and Badger 1975; Stauffer 
and Solomon 2009). The extrapolated divergence of the human population 
growth rate at years 2026–2040 has been also interpreted as some kind of  
transition (von Foerster, Mora, and Amiot 1960; Korotayev, Malkov, and  
Khaltourina 2006; Johansen and Sornette 2001). However, the growth rate di-
vergence appears only in the "mean-field" models. More realistic models lift 
the divergence and yield earlier date for the population growth to switch from 
one regime to another. This probably implies that the phase transition has already 
taken place in 1960–1970, rather than to occur in 2026–2040. Then the demo-
graphic transition of 1960–1970 is not a purely demographic phenomenon but is 
a signature of the global phase transition that has been affecting all aspects of hu-
man life.  

It is instructive to discuss the properties of this transition in the context of 
such a generic phase transition as lattice percolation (Stauffer and Aharoni 
1994). Here, the disordered state contains disconnected finite-size clusters 
while the ordered state is characterized by the appearance of the infinite cluster 
that ensures connectivity of the whole system. This analogy prompts us to con-
sider globalization as a hallmark of the phase transition of 1960–1970. One of 
the most prominent aspects of globalization is the economic integration. We 
consider a very crude indicator of the economic integration – the growth of 
the European Union, in particular we focus on η = NEU / NEurope – the fraction 
of the European population in the states belonging to European Union or to its 
predecessors such as Common Market. 
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Figure 5.  Dynamics of the European Union growth, η = NEU / NEUROPE  
and of the KOF globalization index 
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NOTES: The circles show NEU , the population in the states that belong to European  
Union or to its predecessors (Common Market), while NEUROPE is the total European 
population. The dashed line shows KOF globalization index (Dreher 2006). Note abrupt 
growth of η around 1960 which is followed by slower steady growth afterwards. This 
reminds a characteristic behavior of the order parameter at phase transitions. 

Figure 5 shows dynamics of η. Amusingly, this very simple measure of 
the European integration mimics the World Globalization index as determined 
by Dreher (2006) using weighted economic, political and cultural indicators. 
Figure 5 shows that the onset of European integration took place in the same 
period – 1960–1970 – when the global demographic transition occurred. 
Serrano (2007) came earlier to similar conclusions by considering the historical 
dynamics of bilateral trade balance. Dependence η (t) is very similar to the be-
havior of order parameter at the percolation phase transition (Stauffer and 
Aharoni 1994). 

If we adopt the hypothesis of the humanity as a system of interacting agents 
that undergoes instability/phase transition peaked at 1960–1970 – this raises 
many interesting questions that prompt extensive scientific research.  

 What is the nature of the phase transition? What is the difference be-
tween two phases? Probably, in the years preceding 1960–1970, the most part 
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of the surplus product eventually went to the population growth. However, after 
1960–1970 the surplus product was spent more on the increase of the quality of 
living, i.e. it was channeled to the increase of subsistence level.  

 What is the proper control parameter that drives this phase transition? Is 
it the total human population, or average population density, or surplus product, 
or something else? 

 What is the order parameter? Globalization index? Another candidate for 
the order parameter could be some measure of information since the appearance 
of the global information network (Kapitza 1996; Dolgonosov and Naidenov 
2006) after 1970 was very prominent. 

 Which parameters diverge upon approaching the transition? What are the 
critical indices? Besides urbanization and literacy that were studied in (Koro-
taev, Malkov, and Khaltourina 2006) it would be interesting to consider the his-
torical dynamics of the warfare indicators such as the weapon range, the power 
of the explosives, etc.  

 How one can define the correlation length? The possible candidates 
could be the average city population (Chase-Dunn and Manning 2002) or  
the average size of a polity (Taagapera 1997). 

 What is the statistics of fluctuations at this transition? It is well-known 
that the fluctuations grow upon approaching the phase transition from both 
sides. The growth of fluctuations in the context of global population growth has 
been already noticed (Johansen and Sornette 2001). In this context, it would be 
especially interesting to consider the timeline of the financial crises. 

 What is the behavior of the dynamic properties of the global human 
population at the transition? The analog of conductivity of the percolating net-
work would be the signal propagation rate or the rate of adoption of technologi-
cal innovations. How did these parameters change through historical time? 

Spatially-inhomogeneous and discrete models 
Our capability to introduce innovations that enlarge carrying capacity of the 
Earth (autocatalycity) translates into human population dynamics equations as 
a positive feedback. It is well known that population dynamics that includes 
positive feedback and diffusion leads to strongly spatially-inhomogeneous 
population pattern (for example, desert oases, vegetation patches in arid zones 
[Shnerb, Sarah et al. 2003], etc.) and favors agglomeration. Indeed, the increas-
ing economic returns and increasing innovation rate arising from the population 
agglomeration in cities is well documented (Bettencourt et al. 2007). This 
means that in the context of the human population dynamics, the spatial  
inhomogeneity by itself has autocatalytic properties. Therefore, the models  
of the human population dynamics should properly address the spatial di-
mension.  
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Note also that the previously discussed models were based on ordinary dif-
ferential equations, as it is commonly accepted in population dynamics (Tur-
chin 2001), and did not take into account neither spatial distribution of 
the population nor the discrete nature of humans. Very often when the contin-
uum equations describing population dynamics assume spatially homogeneous 
population and predict a very slow growth or even population extinction; 
the individuals self-organize in spatio-temporally localized adaptive patches 
which ensure their survival and development. In other words, continuum differ-
ential equations may fail in predicting the population dynamics of the discrete 
proliferating agents (Shnerb, Louzoun et al. 2000). An interesting example of 
such approach is the recent study of the economics development in Poland after 
1990 (Yaari et al. 2008). Yaari et al. showed that the economics growth was led 
by few singular "growth centers" that were associated with the University cen-
ters. Probably, this shows in a different way the ultimate relation between 
the education level/literacy and the human population dynamics (see Koro-
tayev, Malkov, and Khaltourina 2006). All this calls for new generation of 
the models describing the World human population growth. These should be 
discrete and spatially-inhomogeneous models. 

Physical meaning of the parameters of the dynamic models 

We consider here a different topic that arises in relation to dynamical models of 
the human population growth. Equations 10, 11 contain two empirical parame-
ters: r, γ that should be somehow related to the human nature. The meaning of 
the parameter r is more or less clear – it is the relaxation rate of the population 
to sudden changes. It is determined by the difference in birth rate and mortality 
and, to the best of our knowledge, does not exceed rrecord = 0.14. Comparison of 
the growth rate to the models (Figure 2) yields r = 0.01 ~ 0.1 rrecord  that is quite 
reasonable. Note, that r can be measured from the transient phenomena, for ex-
ample, how fast the population size recovers from dramatic disaster such as 
WWII. This yields r ~ 0.02–0.03 that is comparable to r = 0.013 determined 
from the Figure 2. 

The meaning of the parameter γ is more elusive. Kapitza (1996) suggested 
that γ = 1/rU2 where U ≈ 67,000 is the coherent population unit. This implies 
a paradoxical conclusion that any coherent population unit consisting of 
~ 67,000 individuals will develop into civilization consisting of billions of indi-
viduals. To get more clear insight into this paradox we compare the humans to 
the beavers. Besides their short lifespan (16–20 years), the beavers remind hu-
mans in several aspects: they are monogamous, they live in colonies, and most 
important – by building the dams they shape the landscape according to their 
needs, i.e. they can expand the carrying capacity. However, the difference be-
tween the "civilization" of beavers and human civilization is too obvious. 
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Hence, we seek for the deeper relation between the parameter γ and the human 
nature.  

Korotayev, Malkov, and Khaltourina (2006) related γ to the average creativ-
ity of a person. To elaborate further on this subject we assume the following 
scenario. Human population N adjusts to the current carrying capacity very fast. 
Carrying capacity K slowly increases due to technological innovations. So far, 
the spreading of the technological innovations has been the bottleneck that de-
termined the dynamics of the carrying capacity growth. Equation 6 can be re-
cast as follows: 

t
KdN

dt
KNdK 


 ,       (15) 

where Nt is the total number of humans lived on Earth till time t, and τ is the 
average lifetime of the generation. The solution of Eq. 15 is K = Kiexp(γτNt) 
where Ki is the carrying capacity at time ti and Nt is the total number of humans 
that lived on Earth between ti and t. Then 
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For the hyperbolic population growth (Eqs. 3, 4), the total number of people 
lived between ti and t depends logarithmically on time:  
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 .         (17) 

The technological innovations are created by people and they are accumulating. 
This means that the carrying capacity at time t is the result of activity of all 
people that lived before (Cohen 1995). Therefore, the parameter γτ character-
izes the average contribution of an individual to the expansion of the carrying 
capacity of the Earth. This may be interpreted in two ways. 

1. Each individual contributes to the growth of the Earth carrying capacity 
in such a way that the average personal contribution, ΔK = γτK. 

2. The carrying capacity increases by abrupt steps, ΔK ~ K, due to stepwise 
development of science (Turchin 1977) and to scientific/technological revolu-
tions (Kuhn 1962). Then γτ is the probability/frequency of these technological 
revolutions. These revolutions are rare events that trigger a series of smaller in-
novations which become embodied long before the next revolution occurs. Ac-
cording to this interpretation, the parameter γτ is the probability that an inventor 
or group of inventors makes a major technological/social/administrative break-
through. According to this scenario, the human population growth is a series of 
logistic curves, each corresponding to a technological revolution. The quantity 
N0 ≈ 1/γτ (see Eq. 12) has the meaning of the number of people lived that en-
sure one major technological revolution. 
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We believe that the second scenario is more adequate. It has several impli-
cations: 

 Log-periodic oscillations around hyperbolic law given by Eq. 3 which 
were noticed by several groups (Korotayev, Malkov, and Khaltourina 2006; 
Johansen and Sornette 2001) and attributed to cycles, correspond to major 
technological revolutions.  

 The current demographic transition and deviation from the hyperbolic 
law appear when the technological revolutions occur so frequently that the full 
potential of the preceding revolution has not been fully realized before the next 
one occurs.  

 While the motivation for technological innovations so far was the drive 
towards increasing carrying capacity, now something changed and the stream 
of innovations results in increased quality of living rather than in increasing 
number of living persons. (This is probably equivalent to increasing subsistence 
level m.) Hence, the population growth is not so fast. 

 Is it possible that the very small probability γτ ≈ 10–9 is somehow related to 
the frequency of genetic mutations which is also exceedingly small (10–7–10–8)?  

 The observation that bigger populations develop fast, while isolated con-
tinents, archipelagos and islands develop slower may be explained quite natu-
rally. This should be related to the probability of appearance of rare events and 
innovators, and to the discreteness of the population. 

The link between the above description and that of Kapitza (1996) is pro-
vided by the discrete character of humans. Indeed, to initiate the positive feed-
back loop given by Eq. 6 for the initial group of hominids to expand, it should 
create at least one working place in the lifetime of one generation. This brings 
us to the minimal group size of Ni ~ (γτ)–1/2 ~ 67,000.  

Another consequence of the approach based on the number of people lived 
in the certain time interval, is the meaning of "historical time". It has been al-
ready noticed (Kapitza 1996) that with respect to the frequency of historical 
events, the natural time scale is logarithmic rather than linear. Since the total 
number of humans that lived on the Earth also depends logarithmically on time 
(Eq. 17), then Nt seems to be the "internal clock" of humanity. This conjecture 
provides the basis for quantitative comparison of the historical development of 
different isolated communities. According to this interpretation, the internal 
clock of a community is the total number of people that ever lived in this com-
munity. 
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Abstract 

This work focuses on: 1) demographic problems arising from the growing human popu-
lation of the Earth, and 2) on the quantitative estimates of the future growth of the 
Earth's population. We discuss the existing models of the global human population 
growth using a popular presentation level and without appealing to sophisticated 
mathematical language. Instead of proposing a new mathematical model of the popula-
tion growth, we advance a new perspective for the mathematical modeling: phase transi-
tions which are well-know in physics. In particular, we demonstrate that the world's 
demographic transition is actually a phase transition that has been affecting all aspects of 
our life. 

Keywords: demographic transition, phase transition, world population. 
 


