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The Trajectory of the World System 
over the Last 5000 Years1

Tony Harper

That history has a path, a trajectory through time, has been the focus of study 
by many prominent scholars including Marx (1977), Toynbee (1946), Jaspers 
(1965), Diakonoff (1999), and others. It is the intent of this paper to delineate 
this path as a trajectory of the world system through time. The term ‘world 
system’ is used here as initially defi ned by Wallerstein (1974) and then modifi ed 
by Modelski (2003) to represent a single, global, world system. This paper 
addresses the problem of delineating the trajectory of the world system from 
a more quantitative and mathematical perspective than has previously been done.
Assuming that urban areas through time have a Pareto-like distribution, 
a mathematical model relating the magnitude of the total world system popula-
tion, T, the ratio of largest to smallest urban area, a, and γ, a measure of the form 
of the distribution and also a proxy for the connectedness of the distribution, is 
constructed. The model is used to graphically represent all possible states of the 
world system and to plot the actual position of the world system through time. 
The actual trajectory has some notable large scale characteristics which are 
discussed. Other smaller scale trends are also noted.
A partial analysis of the constraints limiting this system is given and includes 
a consideration of the magnitude of changes in each of the model variables, the 
relationship between changes in the variables, α and C, of the distribution of 
urban areas, and a consideration of the relationship between γ and future values 
of that variable removed by one, two, or three centuries. The (apparent) scale-
free nature of the model is also assessed. Finally, it is noted that the analysis 
of residuals of the linearized relationships between γ and both T and a yield 
cyclical changes with very long term periodicity. 

Keywords: world system, math model, mixed strategy, Pareto-like distribution, 
search-pattern, theoretical space, urbanization.

Introduction2

The concept of a world system as fi rst envisioned by Immanuel Wallerstein 
(1974) consists of a single or small group of core polities connected economically to 
a larger number of semi-peripheral polities which are in turn economically connected 
to an even larger number of peripheral polities. The core polities exploited the semi-
peripheral and peripheral polities with respect to resource extraction, and were 

1 This paper is dedicated to two researchers, Sergei Chetverikov and Nikolai Kondratieff, who were pioneers in their 
respective fi elds of interest, whose intellect and creativity revealed previously unrecognized vistas of scientifi c 
endeavor, and whose careers were far too brief.

2 This article was fi rst published in the almanac History & Mathematics: Processes and Models of Global Dynamics 
(edited by Leonid Grinin, Peter Herrmann, Andrey Korotayev, and Arno Tausch). Volgograd: Uchitel Publishing 
House, 2010, pp. 13–63.
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the center of production of this pyramidal organization, this production being driven by 
global capitalism. Wallerstein (2004)  defi nes capitalism as continual or endless 
consumption with the implication that there will be an on-going fl ow of materials from 
peripheral and semi-peripheral polities to the core producers. It should be noted here that 
this arrangement of core to peripheral polity is analogous to a Pareto-like distribution 
in which high frequency entities are members of low magnitude classes, in this case low 
magnitude classes have low access to wealth, and low frequency entities have access to 
considerable wealth.

Since the inception of the world system concept other scholars have investigated 
the reality of the existence of the world system over the course of human history and 
have charted the historical paths of this system. Notable among these scholars are the 
late Andre Gunder Frank and William Thompson (2005), as well as George Modelski 
(2003). Also deserving note for their work on macro-models of world system behavior 
are Andrey Korotayev, Artemy Malkov, and Daria Khaltourina (2006a, 2006b; Korotayev 
and Khaltourina 2006). Their work, led by Korotayev, has taken a detailed look at both 
contemporary phenomena such as the global demographic transition we are currently 
rapidly approaching and the medieval and contemporary demographics of Africa and also 
the historical demographics of Medieval Egypt, always with the concept of the world 
system providing the fundamental direction for their work. Also of note is Historical 
Dynamics by Peter Turchin, a work that addresses the mathematical study of dynamic 
changes in agrarian polities, particularly secular cycles, and encompasses almost the 
entire time period under study in this paper. 

Of the scholars mentioned, George Modelski (2003 and elsewhere) has taken the 
broadest view of world system evolution and history and has provided a graphical model 
of world system evolution as it is refl ected by both changes in urbanization and changes 
in global population magnitude. His model, a graph of fi ve thousand years of world 
system history, consists of phases of growth punctuated by phases of reorganization, 
with each phase lasting about one thousand years. While the phases of growth are 
characterized by a positive slope, the periods of reorganization are plateau-like with 
an average slope of zero (see Figs 1a and 1b). The form of these graphs themselves can 
be produced either by tracking the global population of the world system over time or 
by tracking the maximum size of urban area over time. In either case the same pattern 
is produced, that pattern being a set of two plateaus fl anked by by periods of directed 
change and characterized by more or less continuously decreasing values of γ. For the 
purposes of this paper Modelski's data on world cities have been modifi ed to produce 
Figs 1a and 1b. Specifi cally, the minimum total number of people inhabiting world cities 
for the Ancient, Classical, and Modern World systems by taking the number of world 
cities and multiplying that number by the average minimum number of people inhabiting 
those cities as defi ned by Modelski (2003). Fig. 1a is a punctuated linear plot of this 
data in which each segment represents each of the three historic periods. It can be seen 
that the fi rst two segments of this graph have essentially the same shape even though 
the city size differs by an order of magnitude. The segment of this graph representing 
the Modern World system has the form of an exponential curve. In Fig. 1b the ordinate 
is logarithmic, and the sense of scale between the three ages gives a clearer picture of 
the relationship between the periods of growth and the plateaus, designated as periods 
of reorganization by Modelski. Of interest is the fact that the period of time known as 
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the so-called Dark Ages, i.e. the early Medieval Age, is associated with one of the phases 
of reorganization and such events as the ends of the Early, Middle, and Late Bronze Ages 
are associated with an earlier period of reorganization.

This paper proposes to investigate world system behavior over time, i.e. world system 
evolution, from a more quantitative and mathematical perspective. Included within this 
analysis will be the assessment of the degree of connectedness of the world system as 
it is refl ected by urbanization. It is the intent here to map out the limits to or constraints 
on world system evolution, and the approach to this evolutionary analysis is not unlike 
that of Raup and Michelson (1965) in which they established physical constraints to the 
evolution of the molluscan coiled shell.

Fundamental to this approach is the construction of a model based on appropriate 
assumptions regarding the structure, function, and evolution of  the world system. These 
assumptions must not only constrain and guide the form of the model constructed but 
also permit modifi cations to the model. Further, these assumptions will defi ne the ability 
of the model to refl ect reality, generality, and precision with respect to the function of 
the model. Recall that only two of the three model characteristics can be satisfi ed by any 
given model. The model constructed in this analysis has considerable generality having 
general applicability over time and is capable of making precise predictions, but does not 
refl ect any particular reality, i.e. it is global in scope. In other words, the model will not 
represent the detailed historical course of the Roman Empire, or the demise of the Mayas, 
or the migrations of the Xiongnu. Rather, it will provide a specifi c context within which 
specialists can research the details of these and other civilizations. Finally, because of the 
nature of this model, it should be considered as a complimentary and supplementary tool 
to other types of historical research, not a replacement of standard historical scholarship; 
the domain of historical research is being expanded rather than shifting its locus.

Fig. 1a. The left-hand ordinate represents the number of world cities of the 
Ancient World, while the right-hand ordinate represents the number of 
world cities in the Classical World with the upward right-pointing arrow 
representing the increase in world cities of the Modern Age
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Fig. 1b. This graph is a semi-logarithmic representation of the data depicted in 
Fig. 1a. The scale of the minimum total populace living in world cities 
for each of the ages represented reveals a difference by an increase 
in an order of magnitude as one progresses through the fi ve thousand 
year period to the present. Note that the question mark at 2600 BCE 
represents a lack of available data. The ordinate scale in the following 
successive orders of magnitude, 104, 105, and 106, all representing 
population size

The Model
The intent of this model is to provide a tool by which parameters can be generated that 
characterize the state of the world system with respect to the degree of urbanization, 
the magnitude of the world system population, and the degree of connectedness of the 
world system. The model depends on three fundamental assumptions, fi rst, that a world 
system does in fact exist and has existed over historical time and is global in extent, 
an assumption that is on (reasonably) solid ground, second, that the distribution of urban 
areas is Pareto-like, i.e. as described in the Introduction, that there are many urban areas 
that are small, while there are a few large urban areas, and, third, that the distribution is 
scale free. Explicitly, this distribution can be described by the following equation:

F = αC-γ,                                                  (Eq. 1)
where F represents frequency, α represents the maximum size of an urban area raised to 
the (positive) gamma power, C represents the class size of a given urban area as measured 
by its population, and γ is the exponent and is a measure of connectedness between urban 
areas as per the third assumption.  

The total population of the world system, T, is then the sum of the world system urban 
population Tu, and that portion of the population existing rurally, Tr. An equation can be 
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derived (see Appendix for the relevant mathematics) which relates the ratio of largest 
to smallest urban size, a, the global population, T, and gamma, γ, the exponent of Eq. 1, 
which represents the degree of connec-tivity between urban areas. This equation is:

aγ C0
γ – 1 – a – (γ – 1)T/ C0 = 0                 (Eq. 18 of the Appendix)

Note that the symbol, C0, represents the smallest urban size and is held constant in value 
at 100. It should also be apparent that Eq. 18 has a single dimension, population number, 
in this case of people. In other words, while a and the ratio, T/C0, are dimensionless, C0 
is not; it has the dimension noted above. Data for both T and the maximum urban area 
size over the last fi ve thousand years (Chandler 1987; Modelski 2003; and the US Census 
Bureau), and then γ may be computed. Using the values of γ, T, and a = Cmax/C0 acquired 
from the data set mentioned above, the state of the world system can then be plotted over 
the last fi ve thousand years. However, Eq. 18 may also be used to generate a plot of all 
possible states of the world system, and this plot may then be used in comparison with 
the actual plot mentioned previously to determine what combinations of γ, T, and a are 
permissible and what are not. The question may then be posed: Why are certain sets of γ, 
T, and a functional while others are not? First, however, it will be important to generate 
the theoretical landscape. 

The Theoretical Landscape of the World System 
The theoretical surface generated by Eq. 18 (see Fig. 2) represents a surface in three-
space with the axes x = a, y = γ, and z = T/C0. However, the log transform of Eq. 18, 
ln[aγC0 

γ–1 – a] – ln[(γ – 1)T/C0] = 0, is to be used here so that the data having lower orders 
of magnitude could be displayed appropriately. For instance, the global population at 
3000 BCE has been estimated at fourteen million, whereas one thousand years later it is 
twenty-seven million, and a thousand years further on, fi fty million. In that same period 
of time the maximum urban size changes from forty thousand to eighty thousand in 2800 
BCE and 2300 BCE and then to one hundred thousand by 1000 BCE. If, however, the span 
of the Common Era is considered, i.e. the last two thousand years, the global population 
changes from approximately one hundred and seventy million to over six billion and in 
the same period of time the maximum urban size increases from eight hundred thousand 
to over twenty million. Representing this last set of fi gures dwarfs the other data, e.g. by 
a factor of fi ve hundred with respect to the maximum urban area of 3000 BCE. It should 
also be kept in mind that the surface in Figs 2, 3, 4, and 5 was determined by computing 
the zeros for Eq. 18. Also, when doing so the upper and lower bounds for a, γ, and T were 
determined empirically, specifi cally they are: 

400 < a < 23,000, 1 < γ ¸1.6, and 14,000,000 < T < 6,000,000,000.



Harper • The Trajectory of the World System 61

Fig. 2. This fi gure represents the surface of Eq. 18, i.e. the theoretical surface of 
the world system in three dimensions. The x-axis represents the magnitude 
of the variable, a, the y-axis represents the magnitude of gamma, and 
the z-axis represents the magnitude of the variable, T

 

This surface exhibits some important characteristics. It is in general L-shaped with a slight 
downward crease toward low values of T and a and higher values of γ. The upright portion 
of the L-shape is a surface that slopes steeply toward a sharp boundary with the horizontal 
portion of the L-shape. 

The angle of this junction will become clear in the view of γ v. T in Fig. 4 which 
reveals a very clear L-shape. In Fig. 3, γ v. a, the shape appears fan-like, and in Fig. 5, 
a head-on view of the surface a similar fan-like appearance is revealed. In the following 
section it will be clearly shown that, while this surface is considerable, the portion actually 
occupied by the world system over the last fi ve thousand years is quite restricted.

The morphology of the world system three-dimensional landscape will now be 
considered in terms of three plane views, that of x – y, z – y, and z – x as represented 
in Figs 3, 4, and 5. Viewed in the x-y plane, i.e. a plane representing a plot of γ v. lnT, 
the entire plane is occupied with two notable features, the aforementioned upright and 
horizontal portions of the L-shape and also an attenuation of the horizontal member as γ 
approaches one. In the y – z or γ v. lnT/C0 plane the plot represents the distinctly L-shaped 
form with the previously mentioned attenuation. In the a – lnT/C0 plane the plot reveals 
a distinct fan-shape with the attenuated portion of the graph extending toward the viewer.
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Fig. 3.  This fi gure represents a two-dimensional view of the theoretical landscape 
representing only the magnitudes of gamma and a. The y-axis representing 
gamma is horizontal, and the axis representing a is vertical. Note that as a 
increases, gamma decreases

 
 Fig. 4. The relationship between gamma (y) and T (x), the world system population, 

is represented here. Note that the shape of this graph is that of an L and 
that the horizontal portion attenuates as gamma approaches 1. The general 
shape of this graph suggests that gamma and T are inversely proportional. 
The signifi cance of this will be discussed in a later section

 
With regard to what a, γ, and T represent in Eq. 18 the morphology of the theoretical 
surface suggests the following. As global population increases so does urbanization, at 
least as a broad trend predicted by the nature of this surface. However, in both the case of 
increase in a or increase in T with respect to γ, γ will decrease. This can be confi rmed by 
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considering Eq. 18 where the term (γ – 1)T clearly implies an inverse relation between T 
and γ, and expressing T as a function of a gives: T = [C0/( γ – 1)][a – aγC0

γ – 1], where as 
γ increases, T decreases, and since T and a are directly proportional, then a is inversely 
proportional to γ.

Fig. 5.  The relationship between a (x) and T (z) is represented in this fi gure. While 
this quadrant is not fully occupied by the surface, it should be apparent by 
Eq. 18 that a and T are directly proportional

 

In summary, the three-dimensional plot of Eq. 18 represents an L-shaped surface with 
a gradually attenuated horizontal portion. Further, a and T are directly proportional to each 
other but both are inversely proportional to γ. The signifi cance of this will be addressed in 
the section ‘Discussion and implications of the world system trajectory’.

The World System Trajectory with Respect to γ, T, and a
The previous section presented a view of the theoretical landscape of the world system 
as defi ned by the equation, aγC0

γ–1 – a – (γ – 1)T/C0 = 0. In this section as defi ned by the 
data on γ, T, and a listed in Table 1 to be found in the Appendix the actual trajectory of the 
world system will be described. The description will be given in pair-wise relationships, 
i.e. a = f(γ), T = f(γ), and T = f(a). In each relationship a graph of the independent and 
dependent variable will be presented and then discussed.

Fig. 6 represents the graph of a = f(γ), where each point represents the position of 
the world system, and each line connecting points represents the estimated distance that 
the system took in order to reach the next position in the sequence. This same procedure 
will be used to represent the remaining two relationships, T = f(γ) and T = f(a). Again, 
please note that the graph itself is not rectilinear but rather semi-logarithmic, with the 
abscissa being linear and the ordinate being logarithmic. This is also the case for T = f(γ) 
but not for T = f(a), as that is double logarithmic relationship. Also note that since time is 
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not represented by either axis but is implicit in the relationship, important temporal landmarks 
have been represented, e.g. 3000 BCE, the beginning of the plot, 900 BCE, et al.

Fig. 6. The trajectory of the world system with respect to gamma, x-axis, and lna, 
y-axis, exhibits an inverse relationship. There are two broad sub-trends to 
note here, that there are two periods of oscillation termed search patterns 
and periods of continuous change in which gamma shows continuous 
decrease, one extending from the fi rst search pattern to the second, from 
300 BCE to 300 CE and from 1800 CE to 2000 CE

This graph has a number of trends and characteristics which will be noted in turn. 
The fi rst of these is that there is a broad inverse relationship between gamma and 
Cmax/C0 (= a). This is predicted by the equation itself and represented in the graphs of the 
previous section and suggests that any increase in a implies a decrease in gamma, the 
implications of which will be discussed in the following section. It is comforting however 
to have empirical data suggest the same trend. However, on a smaller scale there are 
a number of circumstances where this relationship does not hold. 

Within this broad inverse trend between γ and a there are three sub-trends of 
signifi cance. The fi rst of these is that the graph is not continuous, but is discontinuous with 
two periods of oscillation between increasing a and decreasing gamma and decreasing 
a and increasing γ. These oscillatory periods represent considerable periods of time 
amounting to approximately one thousand years in each instance. Within these periods 
of oscillation there are segments in which there is no change in a but there is an increase 
in γ, two in the fi rst oscillatory period bounded by 2500 BCE and 300 BCE, and one 
terminating the second period and beginning at 1300 CE. The existence of these three 
anomalous segments suggests that the data represented in Fig. 6 are not simply artifacts of 
aγC0

γ–1 – a – (γ – 1)T/C0 = 0. These segments are real and important to the understanding 
of the world system trajectory.  

Punctuating these two periods of oscillation are two (and possibly three) periods 
of continuous change. The equivocalness of the previous sentence is in all probability 
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an artifact of the available data, however, as graphically represented there are only two 
pronounced periods of continuous change, one extending from 300 BCE to 300 CE and 
the current one that is now ending but extends from 1800 CE to the present. A third may 
exist from 3000 BCE to 2500 BCE, and if so, these three periods of continuous change 
and two periods of oscillation broadly, and only broadly, conform to Modelski's model 
of ages of growth interspersed between ages of reorganization. Even so, each period of 
continuous change represents an increase in a with a concomitant decrease in gamma.

A similar general pattern to that of a = f(γ) of a period of oscillation punctuated with 
a period of (relatively) continuous increase is evident when considering the graph of 
lnT = f(γ) (see Fig. 7). This pattern is also in overall form an inverse one, i.e. as T increases, 
γ decreases and vice versa. Over time then γ decreases from a value of just less than 1.6 to 
one just under 1.25, and during this time, fi ve thousand years, T increases by three orders 
of magnitude, a condition that may change to four orders of magnitude by the end of this 
century. 

Fig. 7. The trajectory of the world system with respect to gamma, x-axis, and 
lnT, y-axis, is represented here. It should be noted that while the same 
general trend and sub-trends are represented here as in Fig. 6, during the 
search pattern periods there is a signifi cant horizontal change in gamma 
with little or no change in T. This would seem to imply that these search-
pattern episodes involve change in connectivity with respect to the degree 
of urbanization but in the absence of marked change in T, i.e. it is as if the 
world system is being repackaged without a change in the over-all size of 
the system

 

Within this broad inverse trend of increasing T with decreasing γ there are two oscillatory 
periods, not unlike search patterns, and similar in general form and identical in temporal 
limits to those noted in a = f(γ), in which there is considerable change in γ with little 
change in T. Also, the change in γ with respect to T in the graph of T = f(γ) alternated 
between positive and negative slope, where as the change in γ with respect to a was always 
negative in the graph of a = f(γ). Each of the search-pattern like structures in Fig. 7 is 
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separated by a period of nearly continuous change as they are in lna = f(γ) and of course 
with the similar temporal limits. The fi rst search pattern extending from 3000 BCE to 
1000 BCE includes a period of change in T without any change in γ, so it may be more 
reasonable to recognize two search-patterns during this time, an older one extending from 
3000 BCE to 2000 BCE and a briefer one from 1500 BCE to 1000 BCE. Both of these 
periods of continuous change represent a change in γ of about –.5. Several so-called Dark 
Ages are found embedded within these search-pattern periods, the two most notable being 
the collapse of the Late Bronze Age and the Dark Age (= Age of Reorganization) occurring 
after the collapse of the Roman Empire.  

The graph of lnT = f(lna) (Fig. 8) differs in general pattern from that of the two previous 
graphs in that a and T are directly proportional to each other.  On a log-log plot the pattern 
exhibits an essentially linear trend from 3000 BCE with T being approximately 14 mil-
lion, and a being approximately four hundred to 2000 CE with T being approximately 
6.2 billion and a being approximately 23 thousand. However, as in the two previous 
graphs there are clearly two searchpattern periods, identical in temporal extent to those 
represented in the two previous graphs, each one associated with the plateaus of the 
Modelski graph (see Fig. 1). As previously noted in the description of the relationship, 
lnT = f(γ), it is these search-pattern periods that are also associated with periods of so-called 
societal collapse. Also characteristic of each search pattern is considerable change in a 
with relatively little change in lnT. There are also two broad periods of continuous change, 
one extending from 900 BCE to 300 BCE and the second from 1000 CE to the present. 
Both periods of increase are punctuated by a century of rapid change with essentially 
no change in lnT. Interestingly, the second such punctuation is actually associated with 
a slight decrease in lnT. 

Fig. 8a. The relationship between lna, x-axis, and lnT, y-axis, represented here 
is clearly linear with a positive slope, however, the antilog transform is 
a power function with an exponent less than one as can be seen in Fig. 8b
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Fig. 8b. This is simply the plot represented in Figure 8a fi tted with a regression line. 
As previously noted the antilog transform gives the power function: 
T = 11.5C.873 (where C is the antilog transform of the x-axis variable, 
lnC) which implies that the fraction of the population living in urban 
settings will increase with increasing T 

 
 
It should be noted that the periods of oscillation identifi ed in Figs 6, 7, and 8 of this paper 
share signifi cant similarities with Figs 7 and 10 of Korotayev and Grinin (2006). Both 
sets of graphs are double-logarithmic3 and show oscillatory behavior of the world 
system over approximately the same period of time, 200 BCE to 1500 CE. However, 
the graphs in this paper also represent an earlier set of oscillations approximately over the 
period, 2000 BCE to 1000 BCE. In Korotayev and Grinin's paper the axes are either 
the logarithm of megacity size or megacity index (x-axis) and the logarithm of developing 
and mature state area (y-axis). While state area is not represented in Figs 6, 7, and 8, 
the megacity size is and it is compared either to γ or to the logarithm of world population. 
The signifi cance of this similarity is that both sets of graphs represent different aspects of 
the same underlying process; according to Grinin and Korotayev, this is a series of phase 
transitions between attraction basins corresponding to qualitatively different levels of the 
world system's sociopolitical and technocultural complexity.

Discussion and Implications of the World System Trajectory 
The previous section involved a detailed description of the world system trajectory as it 
moved through the theoretical three-dimensional space defi ned by the variables, T, a, and 
γ. This section will discuss the signifi cance of these trends, offer some explanation of their 
mechanics, and indulge in some predictions.

From the description of the data it is clear that at least with respect to the three variables, 
T, a, and γ, and their relationship defi ned by: aγC0

γ–1 – a – (γ – 1)T/C0 = 0, that both T and 
γ and a and γ are inversely proportional, while T and a are directly proportional. That 

3 Note that the exponent, γ, is a logarithm.
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this is logically consistent is not diffi cult to show in that if T α 1/ γ and a α 1/ γ, then T 
α a. However, why should this be in reality? With regard to the function, F = αC – γ, as 
γ increases F decreases, and if γ represents a measure of connectivity, then it should be 
expected that as connectivity increases in the world system both T and a should increase, 
consequently this will only occur as γ decreases. Further, the direct relationship between 
T and a is intuitively easy to grasp, since urbanization seems to be directly dependent 
on global population, and, empirically, as T approaches ten billion a larger and larger 
proportion of T becomes urbanized. This can be shown by Eq. 23 (see Mathematical 
Appendix for the derivation): Tu/Tr = (a1 – γ – 1)/(1 – C0

γ – 1) (Eq. 23), and by its graph 
(Fig. 9).

Fig. 9. The ratio of Tu/Tr, y-axis, with respect to time shows that as a, x-axis, 
and gamma change over the 5000 year period represented by the data 
the magnitude of the numerator, Tu, increases as a greater rate than the 
denominator, implying that the degree of urbanization has increased over 
time 

 

Also associated with these broad trends is the fact that the world system trajectory occupies 
very little space within the bounds of the three variables. What is it then that constrains 
this trajectory? Clearly, the relationship defi ned by Eq. 18 may offer some insight, part of 
which is explained in the following paragraphs, but, for instance, no period of continuous 
increase spans rather than more than four hundred years, and no period of change in γ 
occurs over a range greater than .5. Why is this? These questions are posed here so that 
the remaining paragraphs in this section can be considered within the context of imposed 
but as yet identifi ed constraints on the system.

As was previously noted, within these broad trends there are two sets of patterns, 
each in all probability dependent on the other. I refer to the two periods of continuous 
increase punctuated by two periods of what has been labeled as search-pattern behavior 
on the part of the world system. It is these aspects of world system behavior that will 
be (partially) analysed here. Also as previously noted the search-pattern periods have 
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embedded within them what Modelski refers to as ages of reorganization. How are these 
ages of reorganization related to the disjunct search patterns exhibited by the world system 
trajectory?

These questions will be addressed by assessing each of the following in turn: the 
magnitude of change of each of the variables with respect to Eq. 18, the rate of change 
of gamma with respect to gamma itself, the relationship between gamma and preceding 
gammas, specifi cally γn+1, γn+2, and γn+3, the scale free nature of the trajectory, regressions 
of γ with respect to both T and a, and sine series fi ts of the residuals of  γobserved – γexpected.

It was previously emphasized that while the function represented by Eq. 18 provides 
a surface that characterizes all possible states of the world system, the actual trajectory of 
the world system occupies a very limited portion of this surface. Is this restricted domain 
a consequence of the magnitude of cost of changing a given variable of the function 
represented by Eq. 18? After all, there appear to be periods of change in the world system 
trajectory in which either γ changes with little change in the other two or a changes under 
the same condition, or T does likewise. The magnitude of change of each of the variables 
can be represented by the partial derivative of the function with respect to a given variable. 
What follows is a brief analysis of these partial derivatives over time. 

The evaluation of Eq. 18, f(γ, a, T) = aγ C0
γ – 1 – a – (γ – 1)T/ C0 = 0, with respect to each 

of the partial derivates for each of the variables is as follows: ∂f/∂γ = aγC0
γ–1(lna + 

+ lnC0) – T/C0, ∂f/∂a = γaγ–1C0
γ–1 – 1, and ∂f/∂T = – (γ – 1)/C0. It can be shown that the 

magnitude of ∂f/∂γ > ∂f/∂a > ∂f/∂T. This can be demonstrated as follows: Since aγC0
γ–1 > 

> aγ– 1C0
γ–1, where a > 100, C0 = 100, and γ > 1, and since the sum, lna + lnC0, is greater 

than γ, and noting that aγ C0
γ–1 – a = (γ – 1)T/ C0, and logically that (γ – 1)–1[aγ C0

γ–1 – a] = 
= T/ C0, then aγC0

γ–1(lna + lnC0) > (γ – 1)–1[aγ C0
γ–1 – a].4 Since  aγC0

γ–1(lna + lnC0) >> T/ C0, 
and since 1 << γaγ–1C0

γ–1, then ∂f/∂γ > ∂f/∂a, and since ∂f/∂T < 0, then ∂f/∂γ > ∂f/∂a > ∂f/∂T. 
Assuming the logic the previous paragraph holds, it should be expected then that change 

in γ will have the largest effect on the trajectory of the world system, while a change in 
T will have the least effect. This implies that the distribution and connectivity of urban 
areas of the world system will have a greater impact on the system than will a change in 
the magnitude of the total population of the world system. This can be seen graphically 
in Fig. 10 which represents the values of each of the partial derivatives computed for 
the state of the system per century over the 5000 year period for which there are data on 
the state of the world system.

4 Empirically, (γ – 1)–1 ~ 5 or less, while lna + lnC0 ~ 10 or greater.
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Fig. 10. This set of fi gures shows that the trajectory of the world system is most 
greatly affected by changes in gamma with signifi cantly less effect by a. 
Reading from top to bottom the graphs, a, b, c, and d are respectively 
∂f/∂γ varying γ and holding all else constant, ∂f/∂a under the preceding 
conditions, ∂f/∂γ varying a from 400 to 24,000 and holding all else 
constant, and ∂f/∂a under the preceding conditions. Note that changes 
in T, which are not represented, have the least effect, since they are 
negative
a. Note that the y-axis has been adjusted to a natural log scale so that 
the magnitude of change represented in this graph is greater than the 
linearized scale in graph b

b.
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c. In the graph above the y-axis is scaled from 106 to 107, while the 
scale in the graph below is linear

d.

Each of the points on the world system trajectory represents a specifi c state of the 
world system as defi ned by F = αC–γ. If we consider a logarithmic plot of F = αC–γ, i.e. 
lnF = lnα – γlnC, the plot represents a triangular space on logarithmic axes bounded by 
the line represented by the previous equation and by the segment of the ordinate from 
ln 1 to γlnCmax and the segment of the abscissa from ln 1 to lnCmax. Note that as long 
as γ > 1 the bounding ordinate segment will be greater than the bounding segment of 
the abscissa. There are three ways to change the area of this triangle: 1. To change 
lnα (=γlnCmax). 2. To change lnCmax. (Any change in γ will automatically bring about 
a change in the magnitude of the bounding segment of the abscissa.) 3. To change both. 
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As the world system moves along its trajectory, what is the strategy used? Which variable 
is changed, or is the mixed strategy employed, and, if so, what is the mixed strategy?

It will be instructive fi rst to note the state of the world system as refl ected by the 
relationship between α, Cmax, and γ at regular points over the fi ve thousand year time span 
being investigated. In this instance one thousand year intervals have been chosen to refl ect 
the broad trend of world system change (see Fig. 12. The absolute value of the slope of each 
line is the value of γ as a consequence of the magnitude of both α and Cmax for that specifi c 
century. With the exception of the centuries 3000 BCE and 2000 BCE all sets of α, Cmax, 
and γ are unique. This of course implies that the position of the world system is unique 
and has evolved, i.e. changed, over time. Also, and not unexpectedly, as the world system 
progresses over the last fi ve thousand years, there is an increase in the position of both 
intercepts, i.e. as both intercepts depend on the magnitude of the maximum urban area of 
a given point in time, Cmax, both intercepts increase as a consequence of the increased 
degree of urbanization over recorded history. However, while the degree of urbanization of 
the world system has increased over time, it has done so far from the point(s) of equilibria 
of that system, and in fact the world system is a non-equilibrium system.

If Eq. 18 is modifi ed by multiplying through by C0, then this equation becomes, 
Cmax

γ – Cmax – (γ – 1)T = 0 (Eq. 24), and if this modifi ed equation is then partially 
differentiated with respect to γ the partial derivative is: ∂f/ ∂γ = Cmax

γln Cmax – T. Further, 
by setting this partial derivative equal to zero and then solving for γ the following equation 
is produced: γ = [ln Cmax] – 1ln[T/ln Cmax] (Eq. 25). This last equation gives the equilibrium 
value of γ, i.e. γeq, and can then be used to compute γeq for each value of Cmax and T per 
century over the period of time for which the world system is being analysed in this 
paper. Interestingly, when γeq is computed in this way, the values of γeq do not match γo, 
the observed values for gamma, but instead vary in a consistent and linear way from 
the observed value of gamma. The consistency of this difference is shown by regressing 
|γo – γeq|, ∆ γ, against γo, which gives: ∆γ = .257γo – .230 (Eq. 26.) and has an r-value of 
.992, which implies an exceptional fi t. This relationship can be seen graphically in Fig. 11. 
This then is one more line of evidence that suggests that the trajectory of the world system 
is constrained. 

Unsurprisingly, if γeq is used to compute either the equilibrium value of Cmax or T, 
while using the observed value of the other variable, the magnitude of either varies 
consistently from the observed values of either. Specifi cally, when To, the observed value 
of the world system population, is compared with Teq, given that Teq can be computed 
by: Teq = [Cmax

γ – Cmax]/(γeq – 1), a linear regression of Teq v. To is produced, Teq = .3378 
To – 6246618.955, and when the two sets of data, To and Teq, are compared using a 2-sample 
t-test the p-value is .1175, clearly indicating a difference in the two lists of data, To v. Teq. 
In a similar fashion using the observed value for T and the appropriate value for γeq and 
solving Eq. 24 for Cmax yields equilibrium values larger than the observed values, and 
these values vary systematically with observed values of Cmax. This is a consequence of 
the reduced value of γeq. The regression of Cmax(o) against Cmax(eq) yields: Cmax(eq) = 25.3 
Cmax(o) – 1.02E+7 with an r value of .993, again an exceptionally close fi t. The computed 
values of Cmax and T based on the equilibrium values of γ computed from Eq. 25 are 
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signifi cantly different than the values actually exhibited by the world system and clearly 
imply that the world system is a non-equilibrium system. 

Fig. 11. 

Notes: The graph above represents the relationship between γo on the x-axis and ∆ γ on the y-axis. As can 
be seen by the linearity of the data and the value of r = .992, the data not only exhibit a linear trend but 
do so with very little dispersion about the line: ∆ γ = .257γo – .230. This implies signifi cant constraint on 
the trajectory of the world system. 

Since there is a consistent difference between observed and expected, i.e. equilibrium, 
values of γ and also between computed values of both Cmax and T, then, unquestionably, 
the world system is a non-equilibrium system, and it is appropriate to ask what factors 
are contributing to this consistent difference between observed values and predicted 
equilibrium values. Ball (2008) suggests that non-equilibrium systems are maintained 
away from equilibria by competing processes, and perhaps an extension of the current 
research would be to identify potential opposing processes and then assess their 
signifi cance with respect to changes in gamma. For instance, the relationship between 
urbanization and deurbanization or the relationship between technological innovation and 
carrying capacity might be worthy fi rst choices, as would the cyclical nature of societal 
processes as demonstrated by Turchin and Nefedov (2009), although the signifi cance 
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of phase transitions that the world system has experienced in the past should also be 
considered in that whatever caused the phase transitions suggests an imbalance between 
those competing processes and may in fact make those processes more identifi able.

Even though a predictable difference exists between γo and γeq over the course of the 
last 5000 years Eq. 26 suggests that as γo decreases so does ∆γ, and since historically 
γo has decreased over the last 5000 years so also has done ∆γ. At what point will γo and 
γeq converge? This is easy enough to answer by setting Eq. 26 equal to zero. There is 
a convergence point between expected and observed γ when γo = γeq = .8949, and this 
convergence point is beyond the extinction point of γo = 1, i.e. when γo = 1, then Eq. 24 
becomes: Cmax

1 – Cmax – (1 – 1)T = 0, and this obviously holds for any values of Cmax and T. 
In other words, at no time between 1 < γo ≤ 1.6 will the world system ever be at equilibrium, 
other than in the face of complete collapse. Also, as γo decreases the magnitude of the 
maximum urban area increases.

It will be instructive fi rst to note the state of the world system as refl ected by the 
relationship between α, Cmax, and γ at regular points over the fi ve thousand year time span 
being investigated. In this instance one thousand year intervals have been chosen to refl ect 
the broad trend of world system change (see Fig. 12). The absolute value of the slope of 
each line is the value of γ as a consequence of the magnitude of both α and Cmax for that 
specifi c century. With the exception of the centuries 3000 BCE and 2000 BCE all sets of 
α, Cmax, and γ are unique. This of course implies that the position of the world system is 
unique and has evolved, i.e. changed, over time. Also, and not unexpectedly, as the world 
system progresses over the last fi ve thousand years, there is an increase in the position of 
both intercepts, i.e. as both intercepts depend on the magnitude of the maximum urban area 
of a given point in time, Cmax, both intercepts increase as a consequence of the increased 
degree of urbanization over recorded history.

Even though the degree of urbanization has increased over time it has not done so 
in an even or constant rate. As mentioned previously the transition from 3000 BCE 
to 2000 BCE involved no net change in the magnitude of Cmax, and observation of all 
the time-incremented positions of the world system as represented in Fig. 12 clearly show 
the infl uence, the uneven infl uence, of urbanization as represented by Cmax on the position 
of the world system has caused the progress(ion) of the world system itself to be uneven. 
First, γ is not constant over time but shows a broadly decreasing trend; this implies 
a greater proportional change in Cmax than in α. Over the last two thousand years there 
has been relatively little overall net change in γ, e.g. at 1 CE γ = 1.3090, at 1000 CE 
γ = 1.2969, and at 2000 CE γ = 1.2460. This also appears to be true of the period from 
3000 BCE to 1000 BCE where at 3000 BCE γ = 1.4851, at 2000 BCE γ = 1.5640, and at 
1000 BCE γ = 1.4756. The greatest change in γ occurred between 1000 BCE and 1 CE, 
i.e. from γ = 1.4756 to γ = 1.3090, a period of time encompassing Karl Jaspers' Axial Age.
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Fig. 12. The relationship, γ = lnα/lnCmax, represented at 1000 year intervals 
showing that the state of the world system changes so that the slope of 
the line increases, i.e. becomes less negative. This is due to changes in 
both lnα and lnCmax.

The actual position of the world system line is also not evenly spaced through time with the 
greatest difference represented by the transition from 1000 CE to 2000 CE. Unquestionably 
there are two distinctly different states of the world system represented on this graph and 
one period of transition. The fi rst two thousand years are represented by a median value 
of γ = 1.5070 and the last 2000 years by a median value of γ = 1.2840. The middle one 
thousand years, the period of transition, has a median value of γ = 1.3923. It should be 
noted that the differences between the three medians is .1147 between the median of 
the fi rst two thousand years and the middle one thousand years and is .1083 between the 
median of the middle one thousand years and the median of the fi nal two thousand years. 
Quite obviously these differences are relatively close in magnitude suggesting changes of 
relative magnitude in the world system position. 

In assessing the strategy used by the world system with respect to state space as defi ned 
previously several portions of the trajectory will be considered. These regions include 
portions of each search pattern, including sets of three data points increase in involving 
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a decrease in γ and then an increase, a set that involves continuous increase in γ, another 
that involves continuous decrease in γ, and a set that involves a continuous increase from 
the fi rst search pattern to the second. 

Figs 13 and 14 represent increases in γ, while Figs 15 and 16 represent decreasing 
values of γ. In the case of Figs 13 and 14 the initial segments, from 3000 BCE to 
2900 BCE and from 700 BCE to 600 BCE respectively, the change involved a decrease 
in γlnCmax and an increase in lnCmax, whereas in Figs 15 and 16, changes from 2300 BCE 
to 2200 BCE and 2100 BCE to 2000 BCE the reverse occurred; γlnCmax increased, and 
lnCmax decreased. In other words, when γ either increases or decreases both intercepts 
change but in the opposite direction, i.e. if γ decreases then γlnCmax decreases and lnCmax 
increases, while the reverse would be true if γ were to increase. Interestingly, the value 
of the partial derivative of lnF with respect to α decreases with increasing α, while the 
value of the partial derivative of lnF with respect to C increases with increasing C. So, 
increasing lnCmax while decreasing γlnCmax causes an increase in ∂lnF/∂α and a decrease in 
∂lnF/∂C (see Figs 17 and 18).

Fig. 13. This fi gure represents the change in the world system position as defi ned 
by γ, lnα, and Cmax from 700 BCE to 600 BCE. Note that γ increases as a 
function of both a decrease in lnα and an increase in Cmax
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Fig. 14. Here, as opposed to Fig. 13, the change is reversed, and γ decreases 
as a function of increasing lnα and decreasing lnCmax. The period of time 
represented is the one hundred years intervening 2300 BCE and 2200 BCE

Fig.15. This fi gure represents the effects of the decrease in lnCmax as an at-
tendant change to the increase of the absolute value of γ, which causes 
an increase in lnα during the century from 2300 BCE to 2200 BCE
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Fig. 16. As in Fig. 15 the absolute value of γ increases which causes similar 
changes in the state of the world system, i.e. a reduction in lnCmax which 
causes an increase in lnα, this time during the century from 2100 BCE to 
2000 BCE

In the case of continuous change with respect to the world system trajectory and 
considering the two sequences, 400 BCE to 100 BCE and 700 CE to 1000 CE, both 
representing continuous decreases in the magnitude of γ over a span of 300 years, it would 
be predicted that γlnCmax should decrease continuously while lnCmax should continuously 
increase, and this is exactly what is observed (see Figs 19 and 20). Specifi cally, for the period 
from 400 BCE to 100 BCE γlnCmax decreases from 21.97 to 20.31, while lnCmax increases 
from 12.68 to 13.82; in the period from 700 CE to 1000 CE, the same trends are observed 
as γlnCmax decreases from 22.10 to 20.95, while lnCmax increases from 12.90 to 14.00. 
It should be noted that there are fewer long term changes in which γ increases. However, 
if the period 200 CE to 500 CE is considered, the reverse trends would be predicted, i.e. 
an increase in γlnCmax with a concomitant decrease in lnCmax. In particular, γlnCmax increases 
form 20.40 to 21.61, and lnCmax decreases from 14.00 to 13.12. Again, observations match 
predictions (see Fig. 21).
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Fig. 17. This fi gure represents the change in lnF with respect to α and is hy-
perbolic in form but always positive

Fig. 18. This graph indicates that as C increases so does the rate of change of 
lnF. However, the value of the rate of change in lnF is negative. This 
graph and the one in Fig. 17 appear to be mirror images of one another, 
suggesting that as urbanization, as represented by Cmax, increases both 
partial differentials reduce in effect 



80 Globalistics and Globalization Studies

Fig. 19. This graph represents the change in the world system over a period of 
300 years, from 400 BCE to 100 BCE, in which the absolute value of γ 
continuously decreases. As a consequence there is a continuous increase in 
lnCmax and a decrease in γ lnCmax, which implies an increase in urbanization

Fig. 20. As in Fig. 19 a continuous decrease in the absolute value of γ causes 
an increase in lnCmax and decreases γ lnCmax with the implication that 
the degree of urbanization increases during this period



Harper • The Trajectory of the World System 81

Fig. 21. This graph represents the effects of a continuous increase in gamma over 
the period, 200 CE to 500 CE. As expected, urbanization decreased, while 
the frequency of smaller communities increased

 
At this point it is worth considering what the system would be like if the changes adopted 
by the world system were not of the mixed-strategy variety. What would it mean for γ 
to increase while keeping lnCmax constant? An increase in the value of γlnCmax would be 
required, and this implies an increase in the number of smaller urban areas. On the other 
hand if γlnCmax were to be held constant, then lnCmax would have to be decreased, and as 
this expression would automatically decrease with increasing γ, it is easier to understand 
this change within the context of a change in γ. However, all the evidence suggests 
that both intercepts change, and this may be an accommodation to the cost of changing 
the position of the world system.  In other words, changing γ involves both a change in the 
size of urban areas and also a change in the frequency of urban area size classes. It should 
also be noted that much more time is spent in adjustment of both γlnCmax and lnCmax than 
in increasing population size. Why this should be is not obvious but probably involves 
adjusting to an optimal distribution of urban sizes and size distributions for a given global 
population size or, at least, global population size range.  

While the rule of thumb with respect to the change in the positions of the abscissa and 
ordinate intercepts is that if Cmax or lnCmax, α and its log transform, lnα (=γlnCmax), increases, 
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there are seven exceptions to this rule of thumb in which a decrease in γ, which is usually 
indicative of an increase in lnCmax and a consequent decrease in γlnCmax, is associated with 
an increase in γlnCmax or in one case where an increase in γ is associated with an increase 
in both lnСmax and logically γlnCmax. The following centuries are associated with an in-
crease in γlnCmax and a decrease in γ: 900 BCE, 400 BCE, 600 CE, 1000 CE, 1900 CE, and 
2000 CE, while 1800 CE shows an increase in γ, γlnCmax, and lnCmax.

It is interesting to consider what factors might be at play with regard to changes in γ 
and the attendant changes in lnCmax, and γlnCmax. That lnCmax increases as γ decreases is 
both logically predictable and empirically verifi able. A decrease in the absolute value of 
γ implies of course an increase in –γ, the implications of which are that the largest urban 
areas increase and the frequency of the smallest collective classes of people decreases. It is 
as if there is a pump that moves the populace of the world system from a less urbanized to a 
more urbanized condition. The inverse, when the absolute value of γ increases, population 
movement can be thought of as going in the reverse direction, with urbanization being 
associated with larger numbers of smaller individual urban areas. In circumstances in 
which both γlnCmax and lnCmax increase, the increase in urbanization must be relatively 
greater than the decrease in γ, but also there must be some synergy between smaller and 
larger urban areas. 

Considering changes in γ alone, and defi ning γ as γ = lnα/lnCmax, allows dγ to be 
defi ned as dγ = 1/lnCmax – lnα/ln2Cmax. On the other hand, when dγ is plotted against γ 
using the appropriate values of lnα and lnCmax, the graph (Fig. 18) may be approximated 
as linear, and a regression of dγ on γ gives the equation: dγ = .135 – .113γ. Consequently, 
.135 – .113γ = 1/lnCmax – lnα/ln2Cmax, or (.135 – .113 γ)ln2Cmax – lnCmax + lnα = 0. This 
equation is a quadratic and may be solved using the quadratic formula. The solutions 
yielded give close approximations for lnCmax and consequently by transformation for Cmax. 
This indicates one more form of constraint on the system. It will now be revealing to 
consider the relationship between sequences of γ, i.e. γn, γn – 1, γn – 2, etc.

Of the three variables used to characterize the world system, as has been established 
previously, change in γ has the greatest effect on the system. In light of the importance of γ 
to the world system trajectory it will be important to investigate what the effects of current 
and past values of this variable will have on future values of the variable. This will be done 
graphically by investigating the graphs of γn+1: γn, γn+2: γn, and γn+3: γn. The relationship, 
γn+1: γn, will be investigated fi rst.

In Fig. 22 γn is represented on the x-axis and γn+1 is represented on the y-axis. With 
fi ve signifi cant exceptions the trend exhibited by this plot is linear and represented by 
the regression, γn+1 = .866γn + .2197. The fi ve outliers, numbered 1 through 5 on Fig. 22, 
represent the following centuries: (1) 2000 BCE, (2) 2200 BCE, (3) 2100 BCE, (4) 1900 BCE, 
and (5) 2000 CE. The fi rst three points represent a period of time, 2200 BCE to 2000 BCE, 
during which the Early Bronze Age experienced considerable climatic, economic, and social 
change. There are a number of instances in which societal collapse occurred during this time, 
e.g. the Akkadian Empire, the Old Egyptian Empire, and a number of smaller city states such 
as that found at Tel Leilan, and the Indus Civilization. The last two outlying points represent 
the last two hundred years of the world system trajectory. Removal of these outliers from 
the data set gives a linear regression of: γn+1 = .847γn + .2562, which is not signifi cantly 
different from the previous regression. 
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Fig. 22. γn, x-axis, is plotted against γn+1, y-axis, in this graph revealing a linear 
distribution of points with several notable outliers

The implication of this regression is that there is a clear linear trend exhibited by the 
plot of the total population of points, in other words, that γn+1 depends on γn in a simple, 
proportional fashion. However, if the sequence by which the space of the plot in Fig. 22 
is traced chronologically, then the actual relationship, γn+1: γn, is not linear. In fact, the 
space, when critical points are removed resembles a parabola and potentially may indicate 
a chaotic system, although this point has yet to be confi rmed (Fig. 22). 

When considering the relationship between γn and γn+2, the relationship is unquestionably 
linear, but with greater dispersion of points (see Fig. 23). It should be noted that the overall 
shape of this distribution is dumbbell-like, and it should also be noted that this shape is 
a precursor of the distribution determined by γn+3: γn. The chronological sequence by 
which the space defi ned by γn+2: γn is not as revealing as that defi ned by γn+1: γn.

Fig. 23. In this fi gure γn, x-axis, is plotted against γn+2, y-axis. In this graph, while 
the primary distribution is linear, there is a clear separation of two distinct 
clusters, to the right side of the graph one associated with the Ancient 
World, and one to the left associated with the Classical and Modern Worlds
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Fig. 24. This graph shows clearly that, as with the previous plots, the distribution 
of points is essentially linear. However, since γn, x-axis, is plotted 
against γn+3, y-axis, there is an even more distinct separation between the 
Ancient World on the right hand side of the graph and that of both 
the Classical and Modern worlds on the left than in Fig. 23. Also note 
that the transition between these two clusters of points occurs with an 
initially increasing value of the γ:γn+3 which moves the graph down and to 
the right. A similar trend occurs with the last three plots ending with the 
value of γ for 2000 CE

In Fig. 24 above, the plot of γn+3: γn, there are two discrete distributions of points 
and a shared unoccupied region between the two. The larger cluster is bounded by 
1.37 ≤ γn ≤ 1.57 and for γn+3 the range is 1.39 – 1.57, approximately the same, and the lower 
cluster of points is bounded by 1.27 ≤ γn ≤ 1.42 and 1.24 ≤ γn+3 ≤ 1.42. The unoccupied 
region of overlap is bounded in the following way:  1.38 ≤ γn ≤ 1.42 and 1.32 ≤ γn+3 ≤ 1.45. 
The implications of the fi rst and third distributions are signifi cant in that they imply limits 
on the values of γn adopted by the world system as it evolves over time. If γn falls within the 
bounds, 1.38 – 1.42 then γn+3, a value of γ characteristic of the world system three hundred 
years on, cannot fall within the bounds, 1.38–1.45. This condition places limits on the 
direction of the world system trajectory and suggests that the world system is not only 
limited by sequential values of γ but also by values of γ separated by 300 years! Further, 
the transition from the fi rst, older cluster to the second and younger cluster had to involve 
considerable change in γ over that three hundred year period. For example, (1) is the last 
point in the upper, older cluster, and point (2) is the fi rst in the lower cluster. (1) has the 
coordinates, 1.43 at 600 BCE and 1.36 at 300 BCE, and amounts to a change in γ of –.07. 
(2) has the coordinates, 1.42 at 400 BCE and 1.27 at 100 BCE, amounting to a change in 
γ of –.15. Note also that the changes from 600 BCE to 400 BCE and from 300 BCE to 
100 BCE are respectively –.01 and –.09. These values are all great enough to bridge 
the gap described previously. The gap itself may signify a clear difference between the 
Ancient World and the Classical World with respect to the parameters, γ, a, and T, and is 
suggestive of a difference in organization and probably refl ects differences in technology, 
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communication, and intellectual paradigms to suggest just three, that separates the An-
cient World from the Classical World. It is worthwhile indicating here that points (3) and 
(4) represent the most recent past and the time that we are in currently and may be (are) 
harbingers of a revolutionary change in the position of the world system from its current 
trajectory. Is the world system entering another period of search pattern behavior? Time 
will tell.

As has been previously mentioned the world system has two broadly different aspects to 
its trajectory, periods of continuous change punctuated by periods termed search patterns. 
A casual inspection of Figs 3, 4, and 5 will show that even though these different aspects 
occur at different orders of magnitude with respect to a and T, to the eye they appear 
within the context of mental scaling to be of the same magnitude. In more formal terms in 
any of the two-dimensional logarithmic plots the distance between any two consecutively 
chronological plots at one order of magnitude is within an order of magnitude of the 
distance between two consecutive points at a different order of magnitude. This casual 
inspection suggests self-similarity of world system behavior and that, as conjectured 
earlier in this paper, the world system behavior represented by the original equation, 
F = αC–γ, is scale-free.

In order to demonstrate this, the actual distances between points in Fig. 8b were 
calculated by using the Pythagorean theorem here represented by the equation:  
H = [(a1 – a0)

2 + (T1 – T0)
2]1/2. (Note: The value for a0 used to calculate H is always the initial 

value at 3000 BCE.) The magnitude of H was then divided by either the corresponding Cmax 
or T values, and these scale-normalized values of H were then plotted against time over 
the fi ve thousand year range of the data on these variables. This gives the plot in Fig. 25. 

Fig. 25. This graph represents a time series of the normalized changes in position 
of the world system per century over the last fi ve thousand years. 
Normalization was done by dividing the change in position of the world 
system, a distance computed by Pythagorean Theorem, by the size of the 
maximum urban area of the current century. See text for explanation. Of 
signifi cance is the very obvious periodicity of the world system trajectory 
when represented this way
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Fig. 26. This graph reveals the same pattern as in Fig. 25. However, the change in 
world system position was normalized by dividing the change in position 
of the world system by the total population of the system

There are two aspects of this graph that are striking. First there appears to be a repeated 
pattern, quasiperiodic, with a period of about 1400 years. Second, the world system behavior 
represented by this graph shows steep descent from the peak at 400 BCE, and it is tempting 
to speculate that the world system will experience another precipitous change in position 
within the next one hundred years or so based upon the current position of the world system. 

It is also important to note that embedded within this graph are the basic features of 
Modelski's world system graph of world cities and global population. Note that at 1000 BCE 
as with 1000 CE the world system begins a steep climb which terminates about 1000 years 
afterwards. In other words, Modelski's Ages of Reorganization are represented in this graph 
by periods of time when there is reduced magnitude of H/Cmax, and the Ages of Growth in 
Modelski's model correspond to periods of increased magnitude of H/Cmax. There are also 
some other interesting features of this graph. There are periods of relatively little change in 
H/Cmax such as from 300 CE to 500 CE, and there are periods of constant change as characte-
rized by the period from 100 BCE to 200 CE, where H changes is very little and conse-
quently the position of the world system is relatively static. Finally and most importantly, 
the plots of both H/Cmax and H/T exhibit similar but not identical trends, with the magnitude 
of the trends being greater for H/Cmax, possibly implying that the trajectory of the system 
is more sensitive to changes in Cmax than it is to T. In light of the previously demonstrated 
inequality, ∂f/∂γ > ∂f/∂a > ∂f/∂T, this should not be surprising as a = Cmax/C0. 

It has been previously established that γ is the most infl uential variable on the trajectory 
of the world system. Since the trajectory of the world system, when normalized to either 
Cmax or T exhibits a similar and periodic behavior over the 5000 year period analysed it will 
be important to consider the relationship between Cmax and γ and T and γ. To some extent 
this has already been done in an earlier portion of this segment of the paper, and at this 
point it will be briefl y treated with respect to the similarity between the two regressions. 
However, a linear regression of the natural log-transformed data on both Cmax and T with 
respect to γ may be used to compare the infl uences of the two variables on γ and those 
regressions may also be used to investigate secondary trends not apparent in the original 
data.
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A linear regression of lnT on γ was calculated giving Eq. 24: γ = 3.7736 – .1106T, 
and this equation was used to generate expected values for γ per T. The residuals of each 
pair of values, observed minus expected, were computed and plotted against time to give 
the graph in Fig. 27. Note that while this graph exhibits considerable variation there 
is a clear sinusoidal trend over the time period represented of 5000 years. Beyond this 
broad general trend there are several signifi cant troughs that correspond to historically 
documented events. These are the Early Bronze Age Collapse occurring between 
2200 BCE and 2000 BCE, the European Dark Age from approximately 400 CE to 
800 CE, and the Plague Centuries from 1200 CE to 1400 CE. While it is important that the 
negative residuals correspond to collapse-related events, the inverse seems not to apply, 
since the fl uorescence of a society occurs over a signifi cant period of time. It is interesting 
to note that the period of time over which the Roman Empire became a world power is 
represented on the graph by a steep decline. This is also the period of time occupied by 
the Han Dynasty in China, the Kushan state in northern India, and the Sassanid Persians, 
and it is also a time during which an incipient Silk Road began functioning. That the 
temporal pattern of residuals over time does not specifi cally match specifi c and signifi cant 
historical events should not be considered a weakness of the data, as the data represent 
global changes in γ, T, and a and are therefore system averages.

The program, Data Studio, was used to generate not only the plot in Fig. 27 but also to 
generate best-fi t circular functions to this data. In Fig. 28 a sine curve is fi tted to the data 
having an RMSE of .0874. The world system trajectory can then be represented by the 
equation, R = asin(bT + c) + d, where a, b, c, and d are fi tted constants. The visual fi t of 
the sine curve to the distribution of residuals is distinct, and the period of this fi tted curve 
is 3740 years. Also, both fl orescences and declines of societies occurring during both the 
crests and troughs, e.g., the Late Bronze Age Collapse is associated with a crest, while, 
again, the rise of Rome is associated with a trough. As a fi nal note, we in the Twenty-fi rst 
Century occupy a position on the second crest of this sinusoidal trend of the world system 
and are in the process of transitioning to the descending side of this curve.

Fig. 27. This fi gure represents a graph of the residuals of the Eq. 24 and exhibits 
a cyclical pattern which is formally defi ned by the next graph
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Fig. 28. The cyclical nature of this plot is represented by the equation, R = asin(bT + 
+ c) + d, in which R, the value of the residuals, is represented on the y-axis 

If a sine-series fi t on this data (see Fig. 29) is used instead of a sine fi t, then the equation 
generated has the form: R = a0sin[(b0T)/1050 + c0] + d0 + a1[(b1T)/525 + c1] + d1 and 
the resulting curve, while it exhibits an overall sinusoidal form, has multiple peaks and 
troughs, three per period, and an RMSE of .0708 suggesting a slightly better fi t than the 
sine function alone. The period of this more complex sine-series curve is 3800 years. 
However, since this curve gives a slightly more accurate fi t, the Late Bronze Age Collapse 
is now associated with a minor trough as are the European Dark Age and the Plague 
Century. 

Fig. 29. This is a sine-series fi t to the residuals of Eq. 24, is a better fi t than the 
sine fi t of Fig. 28
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The same type of analysis can be performed on the relationship, lna on γ, which 
produces similar results (see Fig. 30). However, while the sine fi t gives a predictable 
curve with a different period, 3280 years as opposed to 3740 years. Also, the sine-series 
fi t produces a different type of curve (see Fig. 31). These differences can be attributed to 
the differences between the process of urbanization and that of global population growth, 
and it is important to recognize that these curves are out of phase with the process of 
urbanization occurring with a shorter period than that of global growth. 

Fig. 30. This graph is of the residuals of lna with respect to gamma over time 
and has the same general form as the graph in Fig. 27 with some minor 
differences. These differences, however, do manifest themselves in 
a different sine-series fi t than in Fig. 29. See Fig. 31

Fig. 31. A sine-series fi t of the data represented in Fig. 30 is given here. Clearly, 
while this fi t gives a closer approximation to the events represented, 
there is much that is not coincident with this fi t, e.g., the signifi cant 
troughs toward the end of both the Early and Late Bronze Ages
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Summary
The intent of this paper is to present a means of representing the trajectory of the world 
system over the last 5000 years. This is done by fi rst constructing a mathematical model 
based on the assumption that urban area distribution in any given time period can be 
represented by F = αC–γ (Eq. 1). The model based on this assumption, aγ C0

γ – 1 – a – 
– (γ – 1)T/ C0 = 0 (Eq. 18), permits both the construction of a theoretical landscape, which 
represents all possible states of the world system and also the actual path of the world 
system based on values of γ, lna, and lnT. The general morphology of the theoretical 
landscape is one of a mostly fl at plane which slopes upward as γ decreases and both lna 
and lnT increase. The theoretical landscape has a critical edge at γ = 0, as at that value the 
equation equals zero regardless of the values of either a or T. It is within this framework, 
this standard of comparison that the actual position and trajectory of the world system is 
analysed. 

It was discovered, by analysing the variables in a pair-wise fashion, i.e. lna v. γ, lnT 
v. γ, and lnT v. lna, that in the instances where both lna and lnT are plotted against γ, 
these relationships are inverse, while lnT v. lna is a directly proportional and effectively 
linear relationship. However, within these broad trends there are two sub-trends that are 
unsurprisingly common to all three plots. These are periods of oscillation punctuated by 
periods of continuous, directed growth. The oscillatory periods are labeled search-patterns 
due to their apparent searching for the appropriate state of the world system that will then 
allow continuous, directed change over several centuries. There are two broad periods 
of these search-patterns, one encompassing the time period associated with most of the 
Ancient World, 2700 BCE to about 600 BCE, and the other from 100 BCE to 1800 CE, 
which includes much of the Classical World, the Middle Ages, the Renaissance, and the 
Modern World to 1800 CE. It should be noted here that more could be made of the fi ne 
structure of these periods, however that is not the focus of this paper.

Both search-pattern periods are defi ned in terms of their graphical position with no 
special regard to specifi c historical events. It was previously pointed out that both search-
patterns include periods of collapse and the attendant Dark Ages or Ages of Reorganization 
to these periods of collapse. While the search-patterns are characteristic of all plots, it is 
noted that changes in γ are associated with almost no change in the magnitude of lnT, 
but as γ decreases in absolute value a lna increases and vice versa. As was mentioned 
previously the relationship between lnT and lna is direct and can be represented by the 
linear equation, lnT = .873 lna + 11.500.

There are a number of important implications of these major trends which are 
characteristic of the world system trajectory. Clearly, urbanization is associated with 
increases in global population, and, in fact, T is probably dependent on urbanization for its 
increase. An important consequence of this dependency is that the fraction of non-urban 
or rural population decreases over time as is represented by the equation: Tu/Tr = (a1–γ – 1)/
(1 – C0

γ–1) (Eq. 23). Another important consequence of the world system trajectory is that 
it occupies very little of the theoretical landscape delineated earlier.

The chief components affecting the position of the world system within the theoretical 
space defi ned are the relative effects of changing γ, a, and T on Eq. 18. It is shown that 
changing γ as represented by the partial derivative, ∂f/∂γ, has the greatest infl uence on 
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the world system trajectory. The implications of this are far reaching. Since γ is a measure 
of the distribution of urban areas and is also a proxy for world system connectedness, 
periods of change in γ represent periods of change in the distribution of urban areas and 
consequently in their connectedness. Increases in γ, i.e. in the absolute value of γ, affect 
the distribution so that there are fewer urban areas with high populations and many more 
with lower populations. This is a process of de-urbanization, increasing ruralization, and 
reduced connectedness within the world system. The reverse holds for decreasing values 
of γ; these periods represent increasing urbanization and greater connectedness.

Change in the world system may be represented in a variety of ways. The natural log 
transform of Eq. 1 gives lnF = lnα – γlnCmax, and for appropriate values of  α and Cmax 
then it is shown that γ = lnα/lnCmax, and per century the state of the world system may be 
represented graphically by the triangular area bounded by the natural log transform of 
Eq. 1 and the x-axis and y-axis intercepts. Given this graphical representation then the 
change in the state of the world system can be represented by changes in lnα, lnCmax, or 
both, a mixed strategy in other words. It can be shown that when γ decreases lnα decreases 
and lnCmax increases, however when γ increases, the reverse occurs. In other words and 
even in the face of increasing population, T, changes in γ are associated with a mixed 
strategy employing change in both lnα and lnCmax. One anomaly has been noted, that of 
the change associated with the change in the state of the world system from 1300 CE to 
1400 CE where both intercepts increase. Excluding this anomalous instance unquestio-
nably the mixed strategy imposes a constraint on the trajectory of the world system.

That the world system has a trajectory suggests that past conditions of the world system 
infl uence its future position. This effect was investigated by considering plots of γn+1 v. 
γn, γn+2 v. γn, and γn+3 v. γn. As might be expected the plot of γn+1 v. γn is essentially linear, 
however the plots, γn+2 v. γn, and γn+3 v. γn, reveal that the data cluster into two discrete sets 
implying a boundary condition between the Ancient and Classical World on the one hand 
and the Medieval and Modern ones on the other. The infl uence of the magnitude of γ two 
and three centuries later suggests a clear and probably qualitative difference between the 
two sets of points. Further, the transition from the older set of points to the set including 
the current world system suggests a unique pathway between those two sets. 

Observation of the plots, lna v. γ, and lnT v. γ reveals a repeating pattern of oscillations 
punctuated by continuous change. If the distance in theoretical space over which the world 
system moves from century to century is scaled by dividing by either lna or lnT the graph 
of these scaled distances over time reveals a cyclical trend with an approximate period 
of 2400 years giving peaks at 400 BCE and 2000 CE. Both plots give similar patterns in 
which the largest shifts of the world system are succeeded by periods of relative stasis 
that extend over several centuries. It appears that we are currently on the doorstep of such 
a period.

The relationship of γ v. lnT was investigated to reveal any secondary trends as was the 
relationship, γ v. lna. The residuals of both regressions revealed similar cyclical trends 
which were then fi tted to both sine and sine-series functions. The periodicity of these 
trends ranged from approximately 3300 years to 3800 years. The sine function fi t of the 
γ v. lnT data gives a period of 3700 +/–210 years with peaks in the middle of the second 
millennium BCE and now and troughs at the beginning of the Bronze Age and the time 
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of Late Antiquity. However, this general fi t does not account for many of the smaller 
troughs and peaks in the residual-generated graph, e.g., a trough at the end of the Early 
Bronze Age and a peak at approximately 700 CE are associated respectively with a peak 
and a trough of the actual sine function. These and other details are not refl ected in the sine 
fi t. The sine-series fi t of the same data give better but not complete resolution suggesting 
that these trends are predictable.

The same sets of trends are observable in both the sine and sine-series fi t of the 
residuals of γ v. lna linear regression. The periods for these fi ts are respectively 
3280 +/–220 years and 3290 +/–210 years. It is noted however that while the overall 
trends represented by both sine and sine-series fi t are similar, due to differences 
in periodicity, the curves themselves are offset. Since the periods are not similar, 
the interrelationship of the urbanization and total world system population size is not 
a directly interactive one as is, say, the relationship between predator and prey.

In brief then the following statements may be made about the trajectory of the world 
system over the last 5000 years:

1. With respect to the variables, γ, lna, and lnT, the world system clearly exhibits 
a non-random pattern or trajectory over the last 5000 years.

2. In pair-wise analysis of the variable listed in No. 1 similar patterns emerge, but 
with respect to γ in relation to either lna or lnT the relation is inverse, while the relation 
between lna and lnT is direct. 

3. The world system exhibits periods of oscillation punctuated by periods of continuous 
change, the latter always being associated with a decrease in the absolute value of γ.

4. Change in the magnitude of γ has the greatest infl uence on the state and direction of 
the world system trajectory.

5. The world system is a non-equilibrium system.
6. In natural log phase space the world system can be represented as an area bounded 

by lnF = lnα – γlnCmax, and a change in the nature of this phase space involves a mixed 
strategy of changing both the x-axis and y-axis intercepts, lnCmax and lnα. There is at least 
one exception to this strategy, that of the transition from 1300 CE to 1400 CE.

7. The magnitude of γ is infl uenced by prior values of this variable, and the graph of 
γ separated by three centuries on itself reveals a clear separation between the (relatively) 
Modern World and the Classical and Ancient Worlds.

8. The behavior of the world system, as measured by distance moved per century, 
is shown to be similar at different orders of magnitude scaled by both lna and lnT. 
Specifi cally, a repeating pattern is evident in which large movements of the world system 
within the theoretical space defi ned by Eq. 18 are succeeded by periods of near stasis.

9. The greatest change in γ occurs between 1000 BCE and 1 CE. 
10. Residuals of the linear regression of lna v. γ and lnT v. γ reveal cyclical patterns 

that can be modeled by both sine and sine-series functions. The curves produced by these 
functions are faithful to and coincident with a number of major historical events including 
but not limited to various age-terminating collapses. 
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Mathematical appendix
Derivation of Equation 18
The total population of the world system, T, is then the sum of the world system urban 
population Tu, and that portion of the population existing rurally, Tr. Each of these is 
an integral of F, however, by modifying the integral of the total population an expression 
can be derived that will permit T, a, the ratio of the largest urban area to the smallest urban 
area, and γ, as defi ned previously, to be interrelated:

T = ∫F = α∫C–γdC,                                           (Eq. 2)
but with different limits. Tu has the limits, C0 to Cmax, where these limits represent the 
smallest and largest urban, and the defi nite integral has the form:

Tu = [α/(1 – γ)][Cmax
1 – γ – 1].                                  (Eq. 3)

Tr has the limits, 1 to C0, and the defi nite integral is:
Tr = [α/(1 – γ)][ C0

1 – γ – 1].                                 (Eq. 4)
Note that Cmax can be expressed as a function of C0 in that Cmax is a multiple of C0 and can 
be represented by:

Cmax = aC0,                                                 (Eq. 5)
where a is some real number greater than zero. Also note that, assuming that there can 
theoretically be a single largest urban area, then Eq. 1 can be rewritten as:

1 = αCmax
–γ.                                                (Eq. 6)

It follows then that:
α = Cmax

γ.                                                  (Eq. 7)
In turn and according to Eq. 4, Eq. 6 may be rewritten as:

α = aγC0
γ.                                                  (Eq. 8)

So, then substituting into Eq. 3 gives:
Tu = [aγC0

γ /(1 – γ)][ a1 – γC0
1 – γ – C0

1 – γ],                          (Eq. 9)
and further simplifying gives:

Tu = [aγC0
γ C0

1 – γ/(1 – γ)][a1 – γ – 1],                           (Eq. 10)
which may be further simplifi ed to:

Tu = [aγC0/(1 – γ)][a1 – γ – 1].                                (Eq. 11)
By the same reasoning then Tr may be represented as:

Tr = [aγC0/(1 – γ)][1 – C0
γ – 1].                               (Eq. 12)

Since 
T = Tu + Tr,                                            (Eq. 13)

then by substitution:
T = [aγC0/(1 – γ)][a1 – γ – 1] + [aγC0/(1 – γ)][1 – C0

γ – 1].                 (Eq. 14)
Further rearrangement gives:

T = [C0/(1 – γ)][a – aγ] + [aγC0/(1 – γ)][1 – C0
γ – 1],                    (Eq. 15)

then by further rearrangement:
T = aC0/(1 – γ) – aγC0/(1 – γ) + aγC0/(1 – γ) – aγC0

γ/(1 – γ).              (Eq. 16)
Noticing that the second and third terms cancel and multiplying through by (1 – γ)/C0 
gives:

(1 – γ)/ C0T = a – aγ C0
γ – 1,                                     (Eq. 17)
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and a fi nal rearrangement gives:
aγC0

γ – 1 – a – (γ – 1)T/ C0 = 0.                                (Eq. 18)*
* Please note that the same equation could be derived directly by integrating over 

the limits, 1 to Cmax, however, it was felt that by doing a piecemeal integration, it would 
be easier to understand where urbanization fi ts into the larger context of the total world 
system population. Also, it is understood that the distribution represented by Eq. 1, 
F = αC–γ, implies that the largest class, i.e. the class with the highest frequency, would be 
individuals living alone. This is clearly not the case, however, in this paper this inadequacy 
of the model will be ignored.

Derivation of Equation 23
Recalling that Cmax = aC0, that α = Cmax

γ, and that Tu = α∫ C–γdC over the limits C0 to Cmax, 
then the evaluation of this integral is:

Tu = [(aγC0
γ)/(1 – γ)][Cmax

1–γ – C0
γ–1],                             (Eq. 19)

which simplifi es to:
Tu = [(aγC0

γ)/(1 – γ)] [a1–γC0
1–γ – C0

1–γ],                           (Eq. 20)
and further simplifi es to:

Tu = [(aγC0)/(1 – γ)] [a1–γ – 1].                                (Eq. 21)
Using the same reasoning the integral, Tr, can be evaluated over the limits, 1 to C0, as:

Tr = [(aγC0)/(1 – γ)] [1 – C0
γ–1].                              (Eq. 22)

Since the term, [(aγC0)/(1 – γ)], is common to both Eq. 21 and Eq. 22, the ratio, 
Tu/Tr, becomes:

Tu/Tr = (a1–γ – 1)/(1 – C0
γ–1).                                (Eq. 23)

Tables

CENTURY SEQUENCE T Cmax a γо
1 2 3 4 5 6

3000 BCE 0 14E6 40E3 4E2 1.4851
2900 100 14.95E6 60E3 6E2 1.4245
2800 200 15.97E6 80E3 8E2 1.3859
2700 300 17.05E6 70E3 7E2 1.4145
2600 400 18.21E6 60E3 6E2 1.4470
2500 500 19.44E6 50E3 5E2 1.4847
2400 600 20.76E6 50E3 5E2 1.4921
2300 700 22.17E6 80E3 8E2 1.4227
2200 800 23.68E6 50E3 5E2 1.5070
2100 900 25.29E6 10E4 1E3 1.4024
2000 1000 27E6 40E3 4E2 1.5604
1900 1100 28.72E6 40E3 4E2 1.5674
1800 1200 30.54E6 60E3 6E2 1.5047
1700 1300 32.49E6 60E3 6E2 1.5115
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Table (continued)

1 2 3 4 5 6
1600 1400 34.55Е6 50Е3* 5Е2 1.5491
1500 1500 36.74E6 60E3 6E2 1.5250
1400 1600 39.08E6 80E3 8E2 1.4846
1300 1700 41.56E6 12E4 1.2E3 1.4280
1200 1800 44.20E6 16E4 1.6E3 1.3917
1100 1900 47.01E6 12E4 1.2E3 1.4410
1000 2000 50E6 10E4 1E3 1.4756
900 2100 60E6 12.5E4 1.25E3 1.4603
800 2200 70E6 12.5E4 1.25E3 1.4763
700 2300 80E6 10E4 1E3 1.5248
600 2400 90E6 20E4 2E3 1.4322
500 2500 10E7 20E4 2E3 1.4428
400 2600 16.2E7 32E4 3.2E3 1.4239
300 2700 15.6E7 50E4 5E3 1.3606
200 2800 15E7 60E4 6E3 1.3333
100 2900 16E7 10E5 1E4 1.2757

1 CE 3000 17E7 80E4 8E3 1.3090
100 3100 18E7 10E5 1E4 1.2869
200 3200 19E7 12E5 1.2E4 1.2699
300 3300 19E7 10E5 1E4 1.2920
400 3400 19E7 80E4 8E3 1.3195
500 3500 19E7 50E4 5E3 1.3793
600 3600 20E7 60E4 6E3 1.3606
700 3700 20.7E7 40E4 4E3 1.4170
800 3800 22E7 70E4 7E3 1.3499
900 3900 22.6E7 90E4 9E3 1.3211
1000 4000 25.4E7 12E5 1.2E4 1.2969
1100 4100 30.1E7 12E5 1.2E4 1.3125
1200 4200 36E7 10E5 1E4 1.3508
1300 4300 36E7 15E5 1.5E4 1.3022
1400 4400 35E7 10E5 1E4 1.3483
1500 4500 42.5E7 10E5 1E4 1.3657
1600 4600 54.5E7 10E5 1E4 1.3879
1700 4700 60E7 10E5 1E4 1.3963
1800 4800 81.3E7 11E5 1.1E4 1.4112
1900 4900 15.5E8 65E5 6.5E4 1.2654
2000 5000 62E8 23E6 2.3E5 1.2490
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Partial Derivative Table

T T/C0 γ a ∂f/∂γ ∂f/∂a
106 104 1.00 400 –5761 0

“ “ 1.1 “ 2987 3
“ “ 1.25 “ 49944 17
“ “ 1.50 “ 1317048 299
“ “ 1.75 “ 3.5E13 4949
“ “ 1.25 400 49944 17
“ “ 1.25 4000 1287592 30
“ “ 1.25 12000 5549521 40
“ “ 1.25 24000 13867614 48

The following equations were used to calculate the values listed in the Partial De-
rivative Table: aγC0

γ – 1 – a – (γ – 1)T/C0 = 0, ∂f/∂γ = aγln(a) + aγC0
γ – 1lnC0 – T/C0, 

∂f/∂a = γaγ – 1 C0
γ – 1 – 1.
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