
Globalistics and Globalization Studies 2017 103–118 

Part II. HISTORICAL GLOBALISTICS 
 
 

An Equation-Based Systems Approach  
to Modeling Punctuated Equilibria Apparent  

in the Macropattern of Urbanization over Time 
 

Antony Harper 
 
 
This paper presents a detailed description and explanation of a model of punctu-
ated growth as that pattern of growth is related to population size, carrying ca-
pacity, and level of technology. General limits to modeling are introduced to give 
context to the results of the model, and the model itself is a set of differential 
equations representing the relationships between the aforementioned variables. 
It is noted that the pattern of punctuated equilibrium, first introduced by El-
dridge and Gould as it applies to speciation, occurs throughout natural process-
es. A description of the construction of the model, an intuitive construction, is 
given, the model is then used to generate results consistent with the occurrence 
of both punctuation and stasis, and a simple mechanism is proposed to explain 
the interaction between population size, carrying capacity, and level of technol-
ogy that would then produce the pattern of punctuation over time. Finally, fur-
ther modifications of the model to give greater reality to the results are pre-
sented. 
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Introduction 
It has been shown that the macropattern of urbanization over recorded history and in fact 
extending somewhat beyond that 5000 year threshold exhibits discontinuous or punctuated 
change (Harper 2017). Modeling such a process, especially if the models being construct-
ed are mathematical in nature, is more difficult than modeling continuous processes and 
the results are potentially more tenuous. As a consequence, the modeler of non-continuous 
processes has to be every bit as sensitive to the limitations of modeling in general as does 
the modeler of continuous processes. 

One time in a class discussion a student of mine blurted out, ‘You can't do that!’, re-
ferring to an equation I was introducing the class to. His energetic rebuttal was based on 
the fact that the equation in question was an oversimplification of what he perceived to be 
a very complex process. The equation in question was the Verhulst/Logistic equation of 
limited population growth, and, yes, ‘You can do that!’, but with an understanding of the 
limits of the model being used. In general terms, all models are wrong or more appropri-
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ately, incomplete, however, if they were not incomplete, they would not be models but, 
rather, the real thing; it is the nature of their incompleteness that is important to under-
stand. In one sense, models can be described as either too good to be true; the logistic 
equation fits here, or too true to be good; any explicitly narrow model tailored only to rep-
resent a very clearly defined process would fall into this category. More formally, it has 
been shown that models can be designed to meet any two of three conditions, that of being 
precise, being general, and being real (Levins 1968). Models can then be real and precise, 
the previous limited case, real and general, or general and precise, in other words, too 
good to be true… or real. A little reflection on any of the previous three pairs of conditions 
should reveal why the third condition cannot be met by a model addressing the previous 
two. The model to be proposed here is certainly precise and it is hoped has general appli-
cation, but it will not address any of the details of reality. This implies that the model is 
too good to be true, but it most certainly has heuristic worth and, as pointed out by  
Peter Turchin repeatedly1, the application of mathematics to the processes of human histo-
ry has both supplementary and complementary worth and also provides a very effective 
and formal tool of analysis and prediction. 

The pattern of punctuation identified within the macropattern of urbanization is not 
unique to natural processes. The Eldridge and Gould paper (1972) represents a paradigm 
shift in the understanding of the mode of evolution. Evolutionary change as represented in 
the fossil record was shown to be episodic in many instances, and their model of stasis punc-
tuated by evolutionary change provides the basis for the interpretation of a similar pattern 
identified in urban evolution. Of specific interest here is the explanation of stasis as variation 
in the system, in their case, a biological species and in the case here the urbanized portion of 
the world-system population. While Eldridge and Gould also provided a mechanism for such 
punctuated change based on the theory of allopatric speciation, there is no default mecha-
nism of urbanization that can be called on to provide an explanation of change in urbaniza-
tion. However, the rudiments of a very general mechanism of punctuated change which can 
be applied to the historical pattern of urbanization will be presented below. 

While Eldridge and Gould established the reality of punctuated equilibrium in specia-
tion, a more general process has since been presented by the late Per Bak (1996) and a 
number of his collaborators, in particular, Flyvbjerg et al. (1993), and their research 
should be mentioned here, as it is applicable to complex systems in general. Basically, 
these researchers were able to show that a pattern of punctuated equilibrium in a simple 
computer-modeled system which is based on selective elimination and broad upgrade 
could also produce a punctuated pattern akin to the pattern of punctuated equilibrium iden-
tified by Eldridge and Gould. This model is essentially agent-based as opposed to equa-
tion-based and does not consider specific parameters such as those to be analyzed by the 
equation-based model proposed here. 

There are three final points to be considered. First, is the level of model complexity 
used. It will be the intent of the modeling effort here to use as simple a model as will still 
yield functional results. Clearly, it is important to follow the admonition of Einstein and ac-
tually a host of others to be simple but not too simple. Then there is the reality of the status 
of scientific knowledge to consider. The vast majority of scientific knowledge is provisional 
knowledge, consistent with the evidence and models at hand but subject to adjustment and 
even rejection, as both the conceptual knowledge and data of (any given field of) science 
changes. Negative knowledge, what something is not then becomes a potential contributor 
to scientific advancement.  
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The final point of consideration is the composition and structure of the model itself, 
specifically which parameters and their interactions are to be modeled. The model present-
ed here will consider three-component parameters: population size, the carrying capacity 
for that population, and the level of technology accessible to the population. One of the 
purposes of the paper is to show the impact of reciprocal interaction between subcompo-
nents of the total system population in the light of both the level of technology available 
and the carrying capacity that both limits and is altered by interactions with the other com-
ponents.  

The specific model being investigated here is as follows: 
dN1/dt = r1N1[K – (N1 + N2)], 
dN2/dt = r2N2[K – (N1 + N2)], 

r1 = r10 + aN2, 
r2 = r20 + bN1, 

dK/dt = (T – N)/K, and 
dT/dt = T/[K – (N1 + N2)], 

(1) 
(2) 

 
 

(3) 
(4) 

where N1 and N2 represent positively interacting populations, r1 and r2 represent the 
growth rates of the two populations, K is the carrying capacity, T represents the (relative) 
level of technological expertise of the associated population sizes and carrying capacity,  
a and b are tuned constants. (It is presumed that the notation, dN/dt et al., is understood to 
represent the rate of change of the variable in question over the change in time and that the 
equations are understood to be differential equations representing change in a given varia-
ble rather than the variable itself). In turn, the growth rates, r1 and r2, are a function of both 
a base rate of growth of their respective populations and also of positive feedback between 
the populations in this model. While systems of differential equations such as the one 
above are potentially solvable analytically, and insight may also be gained graphically via 
phase plane analysis, this model was investigated using, STELLA, a software explicitly 
designed to analyze differential equations. 

The model was derived intuitively, and the motivation, explanation, and background 
for this intuition will now be given. The model was constructed keeping the following pre-
cepts in mind. First, the model was to be as simple as possible but still be functional. This 
is to say that it had to exhibit the characteristics of the phenomenon being modeled but at 
the same time have the minimal complexity necessary for exhibiting those characteristics. 
Second, since the phenomenon being modeled was the punctuated growth of the macropat-
tern of urbanization over time, the model had to exhibit both phases of punctuation and 
intervening phases of stasis. Finally, since it has been clearly demonstrated that human 
population growth is hyperbolic and not simply exponential, hyperbolic growth had to be 
the mode of positive change in the face of both carrying capacity and technological limita-
tions. 

This last factor of hyperbolic growth will be considered first. In 1960 von Forester, 
Mora and Amiot were the first to demonstrate that human population growth was best 
modeled as a greater-than-exponential process. This was more lucidly and elegantly con-
firmed by the work of Korotayev, Malkov, and Khaltourina (2006) who showed that hu-
man population growth could be described by the differential equation, dN/dt = aN2, hav-
ing the solution, Nt = C/(t0 – tn), where C is a fitted constant, t0 is the so-called doomsday 
date, and tn is some time prior to doomsday. A possible mechanism was proposed by Har-
per (n.d.), in which a two-population system was analyzed with each population contrib-
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uting positively to the growth rate of the other population. It was then shown that the pat-
tern of growth of such a system was greater-than-exponential. This feature of the model is 
incorporated in the equations, r1 = r10 + aN2 and r2 = r20 + bN1, representing the growth 
rates in the two-population system being analyzed here. 

As this model has been analyzed numerically using the software program, STELLA, 
of which a flow chart and copy of the equations are included in an Appendix, the revealed 
aspects of punctuation and stasis, terms first coined by Eldridge and Gould (1972), 
emerged only as a result of running the simulation, i.e. punctuation and stasis are emergent 
phenomena occurring within the constraints of a limited range of variables. A priori, the 
aspects of punctuation and stasis were not predictable from analysis of the structure of  
the model. This has significant implications with respect to the general nature of the model 
and the three key variables, N, K, and T, i.e. population size, carrying capacity, and tech-
nology. The specifics of these implications will be treated further on in this paper. It is also 
of interest that this model is relatively simple, yet produces the structured results that it 
does. 

With respect to the simplicity of the model, and excluding for the moment any further 
discussion of the embedded feature of hyperbolic growth, the model can be represented 
more generally by three equations: 

dN/dt = rN(K – N), 
dK/dt = (T – N)/K, and 

dT/dt = T/(K – N), 

(5) 
(3) 
(6) 

where all symbols are identified as before. This reduced model is given here to emphasize 
the generality of these relationships. In particular, it should be noticed that the Eq. 6 focus-
es on two simple relationships, the difference between the magnitudes of technology and 
population, with technology as an upper limit to population, and the ratio of this difference 
to the magnitude of carrying capacity. This relationship implies that with increasing ex-
ploitation of technology, carrying capacity is reduced, i.e. the numerator shrinks with re-
spect to the denominator. In turn, equation (6) also a ratio, consists of the magnitude of 
technology in the numerator being divided by the difference between carrying capacity 
and population size. In this instance, as population approaches its limit as defined by K, 
the magnitude of this ratio increases. This implies that as resources become scarce, im-
provements in technology will occur to (possibly) avert a crisis. These relationships, those 
of dK/dt and dT/dt, are stated as simply as possible with no other variables, no coefficients 
or exponents, to complicate interpretation of the behavior of the model. Also, equation (5) 
is a variant of the Verhulst/logistic equation in its simplest form, and is meant simply as a 
place-holder for the more elaborated form of population interaction given initially. 

It should also be noted that the actual model being presented here represents a two-
population model, clearly a simplification that is on the face of it, unrealistic. Let me ex-
plain. Were the model to represent more subdivisions of the population, that would violate 
my first precept, that the model be as simple as possible. Given this, of what use is a mod-
el that is admittedly unrealistic? First of all, in one sense all models are unrealistic in that 
they are incomplete. If models were not incomplete, they would not be models, they would 
be the real thing, the reality that is being modeled. It is then not that any given model is 
incomplete, but rather the concern is in what way is a given model incomplete. Using the 
simple dichotomy, models are either too good to be true or too true to be good, the model 
presented in this paper falls into the latter category; it is too good to be true. Another way 
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of stating the limits on the model is to use Levin's tripartite condition for functional mod-
els. Models have imposed on them the conditions of generality, reality, and precision, only 
two of which can be met by any given model. So, if a model is general and precise, as the 
model presented in this paper is, then it cannot be real. 

The previous discussion may explain why an unrealistic model can still have worth, 
but it does not explain in any depth what that worth is. Being able to produce general, pre-
cise results without having those results necessarily being realistic seems tantamount to the 
physicist's wont to analyze imaginary elephants sliding down frictionless planes. What can 
be learned from such an exercise? The answer, of course, is that the model has heuristic 
value, especially if the model can be shown to have universal value within, and this is not 
an oxymoronic statement, defined limits. In other words, if the triage of N, K, and T can be 
shown to have predictable behavior when interrelated in similar ways, this might or would 
imply that punctuation and stasis are expected properties of such systems. 

Thus, the model presented here is a model of punctuation and stasis, not the model of 
punctuation and stasis. Yes, it is meant to represent the general behavior of populations, 
and more specifically urban populations, in relation to both their collective carrying capac-
ity and also to the level of technology that these populations can both produce and also be 
constrained by, but this model also clearly has limits as previously stated. The model of 
Flyvbjerg et al. (1993) is an agent based model that also exhibits punctuation and stasis 
and does so in a quest for a system-limiting level known as self-organized criticality.  
The model investigated here is equation based and exhibits some of the same behavior, 
however, it has not been extensively enough investigated to show that it does have some 
upper limit. For the moment then, let us assume that it does not. Does this imply that this 
system predicts that repeated phases of punctuation and stasis will go on ad nauseam into 
the future? Possibly, but please remember that the model is not realistic but it does have 
the qualities of generality with respect to behavior. Consequently, the most important re-
sult to keep in mind is that the model does exhibit punctuation and stasis and does so as 
emergent properties of the model system and it is hoped also of the world system as it is 
represented by changes in urbanization over time.  

Results 
In this section the model will be put through its paces, first to show that it does exhibit 
punctuation and stasis, and then to show that it does so over a range of variable magni-
tudes. When running this system of equations on STELLA, the time step used was, dt = 1. 
This is in keeping with the nature of the actual data used to analyze the macropattern of 
urbanization over time. This implies that the computer model jumps from time step 1  
to time step 2 and so forth, while it is clearly recognized that no such time saltation occurs 
in reality; this is to say that changes in the magnitude of urban area size with respect to 
population may result is saltatory changes in magnitude, but that is not a consequence of  
a temporal saltation but rather the occurrence of a tipping point being exceed which in turn 
leads to a phase change in urban area magnitude, and in fact this is exactly what would be 
expected in reality and does in fact occur in the program itself, but at a low temporal reso-
lution.  

In Fig. 1 to follow population growth is the only variable represented and exhibits four 
abrupt changes in slope and four periods of stasis. When the plot of carrying capacity is 
added (see Fig. 2), this curve exhibits no abrupt changes in slope and no periods of stasis 
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but does show changes in slope. However, when the plot of relative level of technology is 
included (see Fig. 3), it clearly exhibits both periods of stasis and also of punctuation of 
stasis. With regard to this system of equations then punctuated equilibrium is unquestiona-
bly an emergent phenomenon of the system. It will also be shown that the system is [rela-
tively] sensitive to initial conditions, however, it appears not to be bounded and conse-
quently will not exhibit chaotic behavior.  

 

Fig. 1. X-axis represents time. Y-axis represents population size in unspecified units  
Note: This graph and all other graphs were generated by the program STELLA. 

 

Fig. 2. The axes are as in Fig. 1, but the magnitude of carrying capacity is also rep-
resented by the curve designated with the number 2 
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Fig. 3. Axes are as in the previous two graphs, but the third curve has been added, 
one representing changes in technology over the same period of time repre-
sented by the curve 3 

If attention is now turned to the plots for the differential equations of the model, i.e.  
dN1/dt = r1N1[K – (N1 + N2)], dN2/dt = r2N2[K – (N1 + N2)], dK/dt = (T – N)/K, and  
dT/dt = T/[K – (N1 + N2)], it can be seen that all four equations behave episodically.  
In Fig. 4 the rates of change of both populations 1 and 2 change simultaneously, and their 
magnitude reflects the pattern of total population size in all the phases of stasis represented 
in Figs 1, 2, and 3. It is also of note that these changes in population growth are not con-
tinuous, i.e. that growth rate above zero occurs briefly and is synchronous with periods or 
phases of punctuation, as can be seen in Fig. 5.  

If we now consider the relationship between population change and carrying capacity 
change in Fig. 6, it can be seen that each peak in population growth rate coincides with an 
abrupt change in slope of the graph of carrying capacity change. And in two out of four 
instances the population growth rate change, the first and last, the peaks coincide with 
points of abrupt change in carrying capacity change from positive to negative slope, and 
with regard to the middle two rate change peaks for population change the relationship is 
reversed so that the change in slope associated with carrying capacity is from negative to 
positive. One further observation, as the rate of change of both populations becomes nega-
tive, the rate of change of carrying capacity becomes positive (see Fig. 6). However, fol-
lowing the right-most peak of the population curves all curves exhibit steep negative 
slopes.  

When considering the relationship between the pattern of change for the populations 
of this model with respect to that of technology, it can be seen that each peak of population 
growth rate change coincides with either a peak in technology change or an abrupt change 
in slope from negative to more negative as in the case of the first synchronous population 
rate peak. In both cases the negative slopes of all peaks exactly coincide. 
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Fig. 4. The X-axis represents relative time, while the Y-axis represents the magni-
tude of the change in the synergistically linked populations 1 and 2, num-
bered curves 1 and 2. It can be seen that the change in the differential 
equations representing these populations occurs episodically and simulta-
neously 

 

Fig. 5. The X-axis represents unscaled time. The Y-axis represents the magnitude 
of change in both populations 1 and 2 (curves 1 and 2), and the magnitude 
of their combined populations (curve 3). It can be seen that the peaks of 
each episode of rapid change in the differential equations for populations 1 
and 2 correspond to the beginning of each phase of punctuation 
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Fig. 6. The X-axis is as in previous graphs. The Y-axis is scaled to represent three 
sets of values, those of the rates of change of populations 1 and 2 and also 
of the carrying capacity 

 

Fig. 7. X-axis as previously scaled. Y-axis scaled to represent the magnitude of 
change in both populations 1 and 2 and also that of technology, the latter 
being measured in unspecified units 

Turning briefly to the relationship between change in carrying capacity and change in 
technology as represented in Fig. 8, close inspection reveals that each peak in carrying ca-
pacity coincides with an abrupt change in slope in the rate of change in technology, either 
from a negative slope to zero slope or from less negative to more negative slope. Inspec-
tion of the right-most technology peak reveals a departure from this pattern. Here, while 
there is no peak in the carrying capacity curve, an abrupt change in slope of this curve 
from less negative to more negative coincides with this technology curve peak, that is to 
say that from the point of this right-most technology curve peak onwards, both curves ex-
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hibit a steep negative trend terminating in a zero slope for both curves. However, follow-
ing one time-step later each peak in both the rate of change in the populations and the rate 
of change in technology is a peak in the carrying capacity rate of change curve. These car-
rying capacity peaks are then followed by declines extending several time-steps, which in 
three of the four instances are then followed by further peaks in the rate of change of the 
carrying capacity. Note that the last peak in the rate of change in technology does not pre-
cede a further carrying capacity peak.  

Finally, if all four rates of change are considered together (see Fig. 9), a clear pattern 
emerges in which the peaks of both combined population change and change in technolo-
gy are offset from those of carrying capacity. In each case in which the coincident peaks of 
population change and change in technology occur, the peak in carrying capacity follows 
one time-step later. This description, however, is in no way meant to infer mechanism per 
se, and this will be dealt with in the following section.  

 

Fig. 8. The X-axis is as in the previous graphs. The Y-axis represents the magni-
tude of change in the differential equations representing carrying capacity, 
curve 1, and relative level of technology, curve 2. It is obvious that these 
curves exhibit abrupt changes 

 

Fig. 9. X-axis as previously scaled. Y-axis represents the scaled values for all four 
rates of change, those of both populations (curves 1 and 2), carrying capac-
ity (curve 3), and technology (curve 4) 
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Implications of Results Generated by the Model 
What are the implications of this mathematical model of punctuated growth with respect to 
the macropattern of urbanization? In common parlance, what is it good for? At the outset 
of this paper I suggested that there are three precepts or conditions that the model should 
be designed to meet. Those conditions are: 1) The model must be as simple as possible, yet 
yield significant results, i.e. in the initial wording, be functional; 2) The model has to ex-
hibit both punctuated growth and stasis; 3) The growth phase of model behavior has to 
exhibit hyperbolic growth. Have those conditions been met? What does the model suggest 
about the interplay between the three major parameters of the model, population size, car-
rying capacity, and technology? To what extent is this model a model of the growth behav-
ior of complex systems in general? Finally, what adjustments and adaptations can be  
(and, perhaps, should be) made to improve the model for future application? 

Regarding the initial condition, that the level of simplicity the model has and its ability 
to be functional, while not all the evidence is in, in that the model has not been tested ex-
haustively, the model is certainly simple enough to construct, to embed within the soft-
ware used, simple enough at surface level to understand, and yet produces useful results. 
So, this first condition of simplicity with functionality seems to be met. The second condi-
tion, that of exhibiting the specific type of behavior, punctuation and stasis, that empirical 
evidence yields regarding macropattern changes in urbanization over time, this condition 
too has been met. However, the final condition of the model producing hyperbolic growth 
can only be inferred. Since the time step, dt, was set at dt = 1 and since the actual punctu-
ated changes occur within that time step, it can only be inferred that the rate of change is 
greater than exponential even though the change is quite rapid. So, until further research  
is done on model behavior, formally at least there is no confirmation that the third condi-
tion has been met. 

The diversity of graphical evidence presented in the Results section suggests a poten-
tially rich repertoire of model behavior. On initially running the model, the punctuated 
behavior of the model was completely unexpected and, at least with respect to what could 
be predicted by inspection of the model only, represents an emergent phenomenon.  
The major question to ask then is: What is the cause of this punctuated behavior? Does it 
occur over a wide range of values of the variables of the model? 

Addressing the first question, in Fig. 1 the evidence of punctuated population growth 
is clear, and when Figs 2 and 3 are inspected, it is seen that while carrying capacity does 
not exhibit punctuated growth in sync with changes in population, the carrying capacity 
does exhibit synchronous changes in slope. Technology, on the other hand, does exhibit 
synchronous punctuated changes with population size. At the level of resolution of the 
three primary variables there is then synchroneity of change, but there appears to be no 
immediate evidence for the mechanism of this change. However, if the rates at which these 
changes occur is considered a potential solution becomes apparent. 

If Figs 4 and 5 are inspected, it will be seen that the rates of change of the interacting 
populations are in sync with the punctuated behavior of the total population, an unsurpris-
ing result. However, if these rates of change, i.e. the rates of change of populations 1 and 
2, are compared with the rate of change of the carrying capacity, a different picture emerg-
es. It can be seen in Fig. 6 that three of the four maxima for the population rates of change 
coincide with minima for the rate of change of carrying capacity, while in Fig. 7 the rate of 
change of technology exhibits peaks which are synchronous with the last three population 
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rate of change peaks and in which both technology and population rate of change exhibit 
reduction, i.e. a negative slope, after each population peak. In Fig. 8, however, which 
compares rates of change in technology and carrying capacity it can be seen that the peaks 
in carrying capacity precede those of the rate of change in technology, as to be predicted 
from the data of Figs 6 and 7. If attention is paid to the left hand side of the graph in 
Fig. 8, it is quite clear that carrying capacity rate of change exceeds that of technology for 
a significant period of time. In other words, the rate of change of carrying capacity ex-
ceeds that of both the total population and also technology prior to their own periodic local 
maxima. 

I have a simple mechanism to propose to explain the interactions between population, 
carrying capacity, and technology. Initially, carrying capacity must always exceed (in rela-
tive terms) both the rates of change of population and technology. In turn, this positive 
difference in carrying capacity rate of change provides (numerical) space for the subse-
quent increase in the rates of change of both total population and technology. Increasing 
the rates of change of total population and technology then reduces carrying capacity to a 
local minimum at the same time as total population and technology reach a local maxi-
mum. Stasis is established when the rates of change for both total population and technol-
ogy are maintained at zero. This is an admittedly Malthusian explanation, and one that 
makes general sense in that both population growth and the rate of the exploitation  
of technology and therefore resources require an appropriate gap between those rates of 
change and that of the carrying capacity. 

The third question is much more difficult to address, and I will only allude to a possi-
ble outcome, which at this point in the development of the model is little more than a sug-
gestion of the possibility of a general model of complex system growth. First, recall that 
Bak (1996) and Flyvbjerg et al. (1993) have already provided a model of such growth 
based on the concept of self-organized criticality. What is being suggested here, however, 
is that in (relatively) complex systems, and perhaps the term, complex adaptive systems, 
should be used, and even though it may appear that such systems are more amenable to 
agent based modeling, that the interplay between the subparts of such a complex system 
produce thresholds above which the system can only arise when a key subcomponent ex-
ceeds some threshold value. In the case of the current system of equations, the rate of 
change of the carrying capacity has to reach some maximum prior to the system as a 
whole, i.e. the other two parameters, total population and carrying capacity, moving to the 
next threshold level. Thus, while punctuated growth is, I believe part-and-parcel of com-
plex system behavior, it is very far from being demonstrated firmly, let alone proven, that 
this mode of growth in fact is a general characteristic of complex systems. 

With regard to the implications of the model, this leaves only model improvements for 
consideration. Five areas needing improvement will be considered. If one considers Har-
per (2017), it will be clear that there are two obvious differences between the punctuated 
patterns actually exhibited by urbanization over time, first, that the phases of punctuation 
occur over several centuries, two at least in the case of the current phase of punctuation, 
and that the stasis of the actual world-system is relative in that there is oscillation about a 
mean. In order for the model to develop more explanatory power, it will have to account 
for these two characteristics of the system. This perhaps can be brought about by including 
appropriate coefficients and exponents, especially for the equations for both carrying ca-
pacity and technology. Also, it has not been firmly established what the range of initial 
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values is that will permit this particular system of equations to behave in a punctuated 
fashion. Finally, the system of equations analysed here does not directly represent urban-
ized populations, only population magnitude in general. This needs to be changed. 

What has been presented here in this section then are a series of evaluations of the 
worth or significance of the model of the punctuated growth of a complex system,  
one reflecting the behavior recognized in the macropattern of urbanization over time (Har-
per 2017). The model is also as referred to previously as what is hopefully only a shadow 
of its future self. However, this model does relate population, carrying capacity, and tech-
nology in such a way as to represent what can only be described as an emergent phenome-
non, the punctuated growth of a complex system.   
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Appendix 
The figure below represents the visual construction of the model presented in this paper in 
the language of a STELLA diagram. Note that the names of the various symbols do not 
explicitly match the variables of the differential equation form of the model. 

 
The equations below represent the format of the mathematical operations done associated 
with each of the symbols in the flow chart representation in the mode of the STELLA 
software of the model presented in this paper. 
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The table below represents all the data points generated through twenty-seven genera-

tions in which the time step, dt, is one unit. 
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