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The term, exponential, has long been associated with the growth of organismal 

populations from microbial populations to the populations of complex multicel-

lular eukaryotes. It can be shown, however, that human population growth oc-

curs at greater-than-exponential rates. Von Foerster et al. (1960) but followed 

more elegantly by Korotayev et al. (2006a), have proposed models to more accu-

rately represent this characteristic mode of human population growth. In this 

paper an underlying mechanism is proposed which generates this greater-than-

exponential growth. The mechanism is represented by a toy model of two differ-

ential equations of interacting populations, the interactions of which enhance the 

reproductive abilities of the other population. The end result of this enhancement 

due to positive human interaction, a quintessential characteristic of our species, 

is a pattern of growth motivated by a greater-than-exponential rate of growth. It 

should be noted that the model being proposed is one of many potential models 

and not the sole, the only, possible model.   

Keywords: population, exponential, greater-than-exponential growth (GTEG), 

hyperbolic. 

Introduction 

In 1960 von Foerster et al. proposed a model of global population growth in which the 

form of the growth was greater than exponential. Korotayev, Malkov, and Khaltourina 

(2006a, 2006b) expanded on this model and showed clearly that the form of what they 

named hyperbolic growth fit the data of human population growth over the past ten thou-

sand years quite well. Specifically, the integral form of the equation, dN/dt = aN2, gives  

Nt = a/(t0 – tn), where a is a fitted constant, tn represents some time before t0, and t0 repre-

sents what von Foerster et al. called Doom's Day, the time at which, to use a very appro-

priate Russian phrase, the population enters its ‘blow-up’ phase, i.e. hyperbolic growth 

reaches a critical point in finite time. Note also that a hyperbolic growth model is also rec-

ognized as a valid fit for human population data by Joel Cohen in his book How Many 

People Can the Earth Support? (Cohen 1995).  

In light of the fact that Korotayev et al. (2006a, 2006b) have shown how important 

this form of growth, labeled hyperbolic growth, is to understanding human demography 

over time, it will be important to begin to understand the mechanism behind such growth. 

It should be noted here that Korotayev et al. (Ibid.) have shown that this form of growth 
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applies over both short- and long-term views of human population change ranging from  

a period of ten thousand years to much shorter periods of a few hundred years. Interesting-

ly, if growth form does not change with time scale, an implication of such growth is that  

it is (probably) scale-free in context. This form of growth also manifests itself above the 

population level of biological organization (Markov and Korotayev 2007). However, that 

will not be the focus of this short paper.   

The focus of this paper is to present a mechanism for the type of population behavior 

giving rise to the blow-up phase or regime, or stated another way, to give rise to greater-

than-exponential growth (GTEG). (The acronym, GTEG, will be used throughout this pa-

per to represent all patterns of population growth that are greater than exponential growth 

including but not limited to bi-exponential and hyperbolic growth.) Exponential growth will 

be compared to GTEG, and it will be shown that while the growth of most animal popula-

tions can be represented by exponential growth, human population growth cannot and 

cannot because of a quintessentially human characteristic, that of human interaction which 

occurs at a much higher level than the interaction between members of other animal spe-

cies. Specifically, the toy model will be used to show that total population growth within  

a set of interacting sub-populations is greater than total growth that is the sum of non-

interacting sub-populations. 

Alternative Models of Population Growth 

Exponential population growth is recognized as a basic form of growth exhibi- 

ted by a variety of organisms (e.g., Hutchinson 1978; Gotelli 2001). As noted previously, 

exponential population growth is given by the integral solution to the differential equation, 

dN/dt = rN, which yields, Nt = N0ert, with N0 = the initial size of the population, Nt = the 

size of the population at some future point in time, t, and r = a fitted constant which is the 

growth rate of the population. The log-transform of this equation is: ln Nt = lnN0 + rt.  

It should be noted that the form of this equation is linear, and therefore raw data plotted 

either on semi-log graph paper or log-transformed population data plotted against time 

must give a straight line plot.  

Both exponential growth and the log-transform of exponential growth are represented 

in the following graphs. In Fig. 1 one can see that the graph turns sharply upward and 

would continue to grow in that fashion if time units greater than 64 were used. In Fig. 2 

the log-transformed population data are plotted against the same set of time values. Here 

the plot is linear, and this form is representative of all exponential growth models that are 

log-transformed. So, any log-transform of population data yielding a linear plot represents 

a log-transformation of data of an exponentially growing population. This would not be 

the case of population data of GTEG populations. In this case the log-transformation of the 

data would yield a curve similar in shape to the un-transformed exponential data. In Fig. 3 

the raw data of a population growing at GTEG are represented, and in Fig. 4 the natural 

log-transformed data are plotted over the same time period. 
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Fig. 1. This graph represents the growth of a population over 64 time units based 
on the equation, N = 10e.1t, where the initial population size is 10, e is the 
base of the natural logarithms, and t represents the arbitrary units of time 

 

Fig. 2. This graph represents the natural log-transformed data of population size 
used in Fig. 1 plotted against time in arbitrary units. The equation used is: 
lnN = ln10 + .1t. Variables are defined as in Fig. 1 

In Fig. 3 the form of the curve is not unlike that of an exponential curve in that it begins  

to rise slowly and then toward the end of the time period accelerates in growth, however, 

when the natural log-transformed data are plotted, a curve rather than a straight line is pro-

duced (see Fig. 4.). In other words, mathematical words, the relationship can be represented 

by a power function, i.e. lnN = atb, in which, when b > 0, the relationship is non-linear and 

when b > 1, the relationship will produce a curve which is concave up as in Fig. 4. This 

implies that the antilog-transformed equation, N = Aet^b, will grow at greater-than-an expo-

nential rate as the exponent is not constant but is itself a power function.   
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Fig. 3. Population growth in which the growth rate is GTE is represented in this 
graph. Note that the time period is the same as in Figs 1, 2, and 4. The 
equation used to generate this data is: Nt = 10e.1t^1.5 

 
Fig. 4. This graph represents the natural log-transformed data of Fig. 3 and can be 

produced by the equation, lnN = ln10 + .05t1.5. The plot is unquestionably 
non-linear 

Real World-System Data 

Using the previously defined types of growth, either exponential growth or GTEG, the 

data on population size over time for the world-system in toto can be evaluated to de-

termine which of these two models more realistically represents the pattern of growth  

of an actual human population. In Figs 5 and 6 data for the world-system population 

from 800 CE through 2000 CE are plotted either as unaltered population size (see Fig. 

5), or as natural log-transformed population size (see Fig. 6), in which both sets of data 

are plotted against time. Fig. 5 superficially resembles the curves represented in both 

Fig. 1 and Fig. 3. So, simply on visual inspection, it would be difficult to determine 

which of the two curves more appropriately matched that of Fig. 5. However, even casu-

al inspection of the graph in Fig. 6 unquestionably shows that the log-transformed popu-



Antony Harper • A Toy Model Mechanism 225 

lation data are not linear. In Fig. 6 both a linear and an exponential fit are represented, 

and even without the aid of formal statistical analysis, the exponential curve can be seen 

to be a much better fit. This implies that the rate of growth of the world-system popula-

tion is GTEG. Interestingly, if the populations of other organisms are assessed, they are 

found to be exponential, so, what is there about the mechanism of human population 

growth that produces a GTEG pattern? This question will be addressed in the following 

section.  

 

Fig. 5. Population size for the world system is graphed against time for the period, 
900 CE to 2000 CE 

 
Fig. 6. The population data in Fig. 5 are natural log-transformed and plotted over 

the same period of time. Note that both a linear and an exponential regres-
sion are fitted to this data with the exponential regression the better fit of 
the two  

A Toy Model Mechanism for GTEG 

Based on the information of the previous section a generalized equation representing 
GTEG has the form, Nt = Aet^b, and the question then becomes: What is the reality of the 

exponent, b, of the exponent, t or time? Why is it that animal populations other than hu-
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man can be represented more simply by the equation, Nt = Aet? Clearly, the log-transform 
of both equations gives, ln Nt = lnA + t and ln Nt = lnA + tb respectively. The first trans-

formed equation is linear, while the second one is exponential, and we need to consider 
what it is about humanity that gives the exponent of the exponent, b, its reality. 

Humans are more closely connected with each other both locally and at distance, and I 
wish to propose that it is this higher level of interaction that is ultimately responsible for 

GTEG. Consider this simple model of interaction between two rural communities. One 
community is primarily devoted to farming, actually producing food for human consump-

tion, while the second community is devoted to producing farming equipment. If both 
communities interact then the farming community with the aid of farming equipment, for 

example tractors, reapers, etc., will produce food for both communities, while the second 
community will, as noted, supply the first with farm equipment. This synergism will aid 

both communities, and without it, both communities will have to both produce their own 
farm equipment and raise their own food. 

Mathematically with respect to population growth, the following set of differential 
equations is analogous to the synergism described in the previous pa-ragraph: 

dN1/dt = (r1 + aN2)N1,         (Eq. 1) 

and dN2/dt = (r2 + bN1)N2,         (Eq. 2) 
where r1 and r2 are the growth rates of the respective populations, N1 and N2, and a and b 
are constants representing the degree of synergism between N1 and N2. As can be seen, the 

growth factor for each population includes their own rate of growth and a positive contri-
bution from the other population, either aN2 or bN1. The contributions of each population 

to the other's growth is represented as a linear contribution only because linearity repre-
sents the simplest case. With further research into real cases, the component that each 

population gives to the other may in fact be non-linear, however, the focus of this paper  
is to provide a possible simple mechanism by which GTEG can be produced by synergism 

between populations and do so as simply as possible. Without this synergism, the above 
equations would simply represent exponential growth and would have the form: dN1/dt = r1N1, 

and dN2/dt = r2N2. But, what is the actual reality that the above coupled equations will 
produce GTEG? 

Inspection of the set of differential equations shows that the growth component  
of each equation, r + xN, contains a constant component, r, and a component that is not 

constant but increases. More explicitly, this component is xN, where x is a constant and  
N grows at least at a rate, dN/dt = rN, which on solution gives, Nt = N0ert. In other words, 
this component grows at least exponentially, and therefore the growth of the rate at which 

this population grows is at least exponential. However, since the contributing population  
is also growing at GTEG due to the contributions of the first population, then the first 

population must also grow at GTEG and vice versa. This can be shown numerically using 
the simulated data in Table 1. By graphing the data of the summed populations from the 

table, a graph of population over time is produced (see Fig. 7). If these same data are natu-
ral log-transformed, then if the growth is exponential a linear plot should be expected, 

while if the growth is GTEG, then a curve representing exponential growth of the growth 
rate should be expected. It is the latter type of graph that is produced, so the growth  

is GTEG and is due to the interaction components of the equations, i.e. the xN component 
of the growth component, r + xN. It should be noted here that without the xN components 

in each of the coupled differential equations, these differential equations would have the 
form, dN/dt = rN, which would, of course, yield exponential growth and not GTEG. 
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Table 1 

TIME 1 2 3 4 5 6 7 8 9 10 11 12 

N1 1 1.15 1.33 1.55 1.83 2.19 2.66 3.23 4.10 5.36 7.29 16.34 

N2 1 1.17 1.38 1.63 1.93 2.30 2.77 3.36 4.14 5.20 6.74 13.57 

N1 & N2 2 2.32 2.71 3.18 3.76 4.49 5.43 6.59 8.24 10.56 14.03 29.91 

Ln N1 & 

N2 

.69 .84 1.00 1.16 1.32 1.50 1.69 1.89 2.11 2.36 2.64 3.40 

 

Fig. 7. This graph represents the combined population data, N1 and N2, given in 
Table 1 plotted against time. While this plot is unquestionably greater than 
linear, it is impossible to determine by inspection whether or not the graph 
is exponential or GTEG 

 

Fig. 8. The population data in Fig. 7 are natural log-transformed and plotted over 
the same period of time. Both a linear and an exponential regression are fit-
ted to this data, and it can be seen that the exponential regression is the 
better fit implying that the actual mode of population growth is not expo-

nential but GTEG 
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Since the growth of the simulation, as represented in Figs 7–8, and that of the world sys-

tem, as represented in Figs 5–6, are both greater-than-exponential, it is proposed that the 

mechanism by which the simulation data are produced could also be the mechanism  

by which the actual world-system population grows at a greater-than-exponential rate.  

In other words, human interaction at the inter-group level can be modeled to produce 

GTEG by coupled differential equations in which the growth component contains within  

it a component of exponential growth due to the interaction with another population. 

Clearly, the world-system consists of many interacting populations not just two. However, 

what has been presented here is a toy model of a proposed mechanism by which the world-

system population pattern of growth is GTEG and not exponential. 

Summary 

1. Von Foerster et al. (1960) and Korotayev et al. (2006a) have shown that human 

populations grow at a rate greater than exponential. 

2. Exponential growth increases at a constant rate, and as a consequence the log-

transformed population data give a linear plot against time. 

3. Greater-than-exponential growth (GTEG) yields a curved plot in which the growth 

rate increases with increasing size of the population. 

4. Real world-system data when log-transformed yield as expected an exponential 

curve. 

5. A mechanism is proposed by which human interaction between groups yields 

GTEG. 

6. This mechanism in its simplest form is represented by the following two differential 

equations: dN1/dt = (r1 + aN2)N1, and dN2/dt = (r2 + bN1)N2. 

7. It is shown by numerical simulation that the combined growth of the populations 

represented by these two equations gives GTEG, suggesting that these coupled equations 

represent a model for human population growth. 
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